Из каких сталей изготовляются опоры лэп. Виды опор линий электропередачи по материалу. Опоры воздушных линий

Опоры воздушных линий электропередач

Воздушные линии напряжением 0,4-35 кВ

Воздушные линии напряжением до 1 кВ называют линиями низкого напряжения (НН), 1 кВ и более – высокого напряжения (ВН).

Низковольтные линии представляют собой простейшие сооружения в виде одиночных столбов, заглубленных непосредственно в землю, с укрепленными на них металлическими штырями и изоляторами, к которым прикреплены провода.

В качестве опор применяют деревянные, железобетонные и реже – металлические опоры. Последние, как правило, используют на ответственных пересечениях (железные электрифицированные дороги, автострады и др.). Деревянные опоры могут быть составными на деревянных или железобетонных приставках или из цельных бревен соответствующей длины и диаметра. На линиях 6-35 кВ подвешивают три провода, а на линиях 0.4 кВ опоры допускают совместную подвеску до восьми проводов марки А (Ап) сечением 16-50 мм2.

Линии ВН 3-10 кВ принципиально не отличаются от линий НН однако благодаря большим расстояниям между фазами и между проводами и землей размеры элементов – столбов, штырей, изоляторов – увеличены.

Железобетонные опоры ЛЭП разработаны и эксплуатируются в районах с расчетной температурой воздуха до -55°С. Основным элементом таких опор являются центрифугированные железобетонные стойки. Помимо центрифугированных стоек, в состав железобетонной опоры ЛЭП могут входить опорно-анкерные плиты, ригели, анкеры для оттяжек, нижняя бетонная крышка (подпятник) и металлоконструкции в виде траверс, надставок, тросостоек, оголовников, хомутов, оттяжек, внутренних связей, узлов крепления. Крепление металлоконструкций к стойке опоры осуществляется с помощью хомутов или сквозных болтов. Закрепление в грунте железобетонных опор производится путем установки их в цилиндрический котлован с последующим заполнением пазух песчано-гравийной смесью. Для обеспечения необходимой прочности заделки в слабых грунтах на подземной части опор ВЛ с помощью полухомутов закрепляются ригели. Главный недостаток опор из железобетона - низкие прочностновесовые характеристики, и как следствие высокие затраты при транспортировке из-за больших габаритов и массы изделий. Достоинство - высокая коррозионная стойкость к агрессивной среде.

Классификация железобетонных опор ВЛ

По назначению

    Промежуточные опоры устанавливаются на прямых участках трассы ВЛ, предназначены только для поддержания проводов и тросов и не рассчитаны на нагрузки направленные вдоль линии электропередачи. Как правило общее число промежуточных опор составляют 80 - 90 % от всех опор ЛЭП.

    Анкерные опоры применяются на прямых участках трассы ВЛ в местах перехода через инженерные сооружения или естественные преграды для ограничения анкерного пролета, а также в местах изменения числа, марок и сечений проводов линии электропередачи. Анкерная опора воспринимает нагрузку от разности тяжения проводов и тросов, направленную вдоль ЛЭП. Конструкция анкерных железобетонных опор ВЛ отличается повышенной прочностью. Это обеспечивается, в том числе, применением в опоре железобетонных стоек повышенной прочности.

    Угловые опоры рассчитаны на эксплуатацию в местах изменения направления трассы ВЛ, воспринимают результирующую нагрузку от тяжения проводов и тросов смежных межопорных пролетов. При небольших углах поворота (15 - 30°), где нагрузки невелики, применяют угловые промежуточные опоры. При углах поворота более 30° используют угловые анкерные опоры, которые имеют более прочную конструкцию и анкерное крепление проводов.

    Концевые опоры являются разновидностью анкерных и устанавливаются в конце и начале линии электропередачи, рассчитаны на нагрузку от одностороннего тяжения всех проводов и тросов.

    Специальные опоры применяются для выполнения специальных задач: транспозиционные - для изменения порядка расположения проводов на опорах; переходные - для перехода линии электропередачи через инженерные сооружения или естественные преграды; ответвительные - для устройства ответвлений от магистральной линии электропередачи; противоветровые - для усиления механической прочности участка ЛЭП; перекрестные - при пересечении воздушных ЛЭП двух направлений.

По конструкции

    Портальные железобетонные опоры ВЛ с оттяжками

    Портальные свободностоящие опоры с внутренними связями

    Одно-, двух-, трех- и многостоечные свободностоящие опоры

    Одно-, двух-, трех- и многостоечные опоры с оттяжками

По количеству цепей

    Одноцепные

    Двухцепные

    Многоцепные

ОПОРЫ ВОЗДУШНЫХ ЛИНИЙ.

Опоры воздушных линий в зависимости от назначения и места установки на трассе могут быть промежуточными, анкерными, угловыми, концевыми и специальными.

Промежуточные опоры (смотри рисунок ниже) служат для поддержания проводов на прямых участках линий. На промежуточных опорах провода крепят штыревыми изоляторами. Пролеты между опорами для линий напряжением до 1000В составляют 35 - 45 метров, а для линий до 10кВ - 60 метров.

Опоры воздушных линий:

а и 6 - промежуточные, в - угловая с подкосом,

г - угловая с проволочной оттяжкой

Анкерные опоры (смотри рисунок ниже) устанавливают также на прямых участках трассы и на пересеченных с различными сооружениями. Они имеют жесткую и прочную конструкцию, поскольку в нормальных условиях воспринимают усилия от разности натяжения по проводам, направленные вдоль воздушной линии, а при обрыве проводов должны выдержать натяжение всех оставшихся проводов в анкерном пролете. Провода на анкерных опорах крепят наглухо к подвесным или штыревым изоляторам. Анкерные опоры для воздушных линий напряжением 10кВ ставят на расстоянии около 250 метров.

Анкерная опора воздушной линии

напряжением 6 - 10кВ

Концевые опоры , являющиеся разновидностью анкерных, устанавливают в начале и конце линии. Концевые опоры должны выдерживать постоянно действующее одностороннее натяжение проводов, а угловые (смотри верхний рисунок в и г) - в местах, где меняется направление трассы воздушной линии.

К специальным относят переходные опоры, размещаемые в местах пересечений линиями электропередачи различных сооружений или препятствий (например, рек, железных дорог и т.п.). Эти опоры отличаются от других данной линии высотой или конструкцией.

Опоры изготовляют из дерева, металла, железобетона, а также выполняют составными, сопрягая деревянную стойку опоры с деревянной или железобетонной приставкой.

Для воздушных линий напряжением до 10кВ достаточно долго применяли в основном деревянные опоры, что было обусловлено простотой обработки древесины и ее дешевизной по сравнению со сталью и железобетоном. Опоры изготовляли из сосны, реже из лиственницы, ели или пихты. Диаметр в верхнем отрубе сосновых бревен для опор и основных деталей должен быть не менее 15 см для линий напряжением до 1000В и 16 см - для линий напряжением 1 - 10кВ. Основным недостатком деревянных непропитанных опор является их недолговечность. Так, срок службы сосновых опор в среднем равен 4 - 5 годам, а опор из ели или пихты 3 - 4 годам.

В настоящее время железобетонные опоры ввиду их долговечности и в целях экономии лесных ресурсов страны находят широкое применение при строительстве новых воздушных сетей.

По конструкции деревянные опоры разделяют : на одинарные; А-образные из двух стоек, расходящихся к основанию; трехногие из трех стоек, сходящихся к вершине; П-образные из двух стоек и соединительной горизонтальной траверсы вверху (поперечный брус); АП-образные из двух А-образных опор и соединительной горизонтальной траверсы.

Применяют также составные опоры, состоящие из стойки и приставки (пасынка). В этих случаях участок сопряжения стойки с приставкой должен быть не менее 1300 мм (смотри рисунок ниже).

Сопряжение стойки деревянной опоры с приставкой:

а - железобетонной, б - деревянной;

I и 4 - нижняя часть опоры и приставки,

2 и 3 - продольная и поперечная арматуры,

5 - приставка, 6 -. проволочный бандаж

Стойки соединяют с приставками при помощи бандажей из стальной проволоки. Для промежуточных опор бандажи выполняют из десяти витков проволоки диаметром 4 мм, для анкерных, угловых и концевых опор - из восьми витков проволоки диаметром 5 мм. Проволочные бандажи закрепляют болтами, подкладывая под головку болтов и под гайки прямоугольные шайбы из полосовой стали.

Стальные опоры изготовляют из труб или профильной стали. Железобетонные опоры выпускаются заводами в виде полых стоек круглого сечения с уменьшающимся по ступеням наружным диаметром и прямоугольные также с уменьшающимся сечением к вершине опоры. На заводах также производят и железобетонные приставки круглого или прямоугольного профиля. При использовании железобетонных приставок и деревянных стоек, пропитанных антисептиком, значительно удлиняется срок службы опор.

Опоры воздушных линий электропередачи независимо от их типа могут выполняться с подкосами или оттяжками (смотри верхний рисунок виг). На всех опорах воздушных линий на высоте 2,5 - 3,0 метра от земли указывают их порядковый номер и год установки.

ПРОВОДА

Провода воздушных линий должны обладать достаточной механической прочностью.

По конструкции провода могут быть однопроволочные или многопроволочные. Однопроволочные провода состоят из одной медной или стальной проволоки и применяются исключительно для линий напряжением до 1000В.

Многопроволочные провода, изготовляемые из меди, алюминия и его сплавов, стали и биметалла, состоят из нескольких скрученных проволок. Эти провода получили широкое распространение благодаря большей механической прочности и гибкости по сравнению с однопроволочными тех же сечений.

Медные провода вследствие дефицитности и дороговизны меди на воздушных линиях не используют. Широко применяются на воздушных линиях алюминиевые многопроволочные провода марки А. Стальные провода для предохранения от атмосферных воздействий оцинковывают. Одножильные стальные провода имеют марку ПСО, многопроволочные - ПС или ПМС, если материалом провода служит медистая сталь.

Сталеалюминевые провода марок АС и АСУ (усиленные) состоят из нескольких скрученных стальных проволок, поверх которых расположены алюминиевые проволоки, и обладают значительно большей механической прочностью по сравнению с алюминиевыми.

Неизолированные алюминиевые провода изготовляют следующих сечений: 6, 10, 16, 25, 35, 50, 70, 95, 120 мм 2 . Сечения проводов воздушных линий определяются расчетом в зависимости от передаваемой мощности, допустимых падений напряжения, механической прочности, длины пролетов, но они должны быть не меньше указанных в следующей таблице.

Минимальные сечения проводов воздушных линий электропередачи

Для ответвления от линии напряжением до 1000В к вводам в здание используют изолированные провода АПР или АВТ, имеющие атмосферостойкую изоляцию и несущий стальной трос. Как на опоре, так и на здании провода АВТ с помощью троса крепятся к отдельному крюку с изолятором.

На промежуточных опорах провода крепят к штыревым изоляторам зажимами или вязальной проволокой из того же материала, что и провод, который не должен в месте крепления иметь изгибов.

Способы крепления проводов зависят от места их расположения на изоляторе - на головке (головная вязка) или на шейке (боковая вязка). Основные способы крепления проводов показаны на следующем рисунке.

Крепление проводов на штыревых изоляторах:

а - головной вязкой, б - боковой вязкой, в - с помощью зажимов,

г - заглушкой, д - петлей, е - двойным подвесом

На анкерных, угловых и концевых опорах провода воздушной линии напряжением до 1000В крепят закручиванием проводов так называемой заглушкой (смотри рисунок, г), а выше 1000В - петлей (смотри рисунок, д). На анкерных и угловых опорах, в местах перехода через железные дороги, проезды, трамвайные пути и на пересечениях с различными силовыми линиями и линиями связи применяют двойной подвес проводов (смотри рисунок, е).

Соединение проводов производят плашечными зажимами (смотри рисунок ниже, а), обжатым овальным соединителем (смотри рисунок ниже, б), овальным соединителем, скрученным специальным приспособлением (на рисунке, в), а также сваркой с помощью термитных патронов и специального аппарата. Однопроволочные стальные провода можно сваривать внахлестку, используя небольшие трансформаторы. В пролете между опорами не должно быть более одного соединения, а в пролетах пересечений воздушной линии с различными сооружениями соединение проводов не допускается. На опорах соединения выполняют так, чтобы они не подвергались механическим усилиям.

Соединение проводов:

а - плашечным зажимом, 6 - обжатым овальным соединителем,

в - скрученным овальным соединителем

ИЗОЛЯТОРЫ

При креплении проводов воздушных линий к опорам применяют изоляторы и крюки, а при креплении к траверсе - изоляторы и штыри. Для воздушных линий напряжением до 1000В используют штыревые фарфоровые изоляторы ТФ и ШН (рисунок ниже, а), для ответвлений ШО (рисунок ниже, б) и стеклянные ТС.

Изоляторы, применяемые для воздушных линий, марок:

а - ТФ и ШН, б - ШО, в - ШФ-бА и ШФ-10А, г - ШФ-10Б, д - П

Крюки и штыри для крепления изоляторов показаны на рисунке ниже. Для воздушных линий напряжением до 1000В используют крюки КН (смотри рисунок ниже, а), изготовляемые из круглой стали диаметром 12 - 18 мм, или КВ (смотри рисунок ниже, б) в зависимости от типа изолятора и штыри ШН или ШУ (смотри рисунок ниже, в).

Детали для крепления изоляторов:

а - крюк КН-16, б - крюк КВ-22, в - стальной штырь ШН или ШУ

На воздушных линиях напряжением 6кВ применяют штыревые изоляторы ШФ-6 (смотри верхний рисунок, б) с крюками КВ-22 и штырями ШН-21, на воздушных линиях напряжением 10кВ - штыревые изоляторы ШФ-10 с крюками КВ-22 и штырями ШУ-22. Изоляторы ШФ-10 (смотри верхний рисунок, г) отличаются от ШФ-6 размерами и изготовляются каждый в трех исполнениях - А, Б и В (смотри верхний рисунок, в и г). В местах анкерных креплений используют подвесные изоляторы П (верхний рисунок, д).

Изоляторы прочно навертывают на крюки или штыри с помощью специальных полиэтиленовых колпачков или пакли, пропитанной суриком либо олифой.

Расположение изоляторов на опоре различное. Так, для воздушных линий напряжением до 1000В при четырехпроводной линии изоляторы располагают по два с каждой стороны опоры вразбежку с соблюдением расстояний между ними по вертикали не менее 400 мм, при этом нулевой провод размещают ниже фазовых проводов со стороны столба, обращенной к домам. При трехпроводной линии напряжением 6 - 10кВ два изолятора находятся с одной стороны опоры, третий - с другой. Изоляторы должны быть чистыми, без трещин, сколов и повреждений глазури.

Опоры ВЛ делятся на анкерные и промежуточные . Опо­ры этих двух основных групп различаются способом под­вески проводов. На промежуточных опорах провода подве­шиваются с помощью поддерживающих гирлянд изолято­ров. Опоры анкерного типа служат для натяжения проводов, на этих опорах провода подвешива­ются с помощью подвесных гирлянд. Расстояние между промежуточными опорами называется промежуточным про­летом или просто пролетом, а расстояние между анкерны­ми опорами - анкерным пролетом.

1. Анкерные опоры предназначены для жесткого закрепле­ния проводов в особо ответственных точках ВЛ: на пересе­чениях особо важных инженерных сооружений (например, железных дорог, ВЛ 330-500 кВ, автомобильных дорог шириной проезжей части более 15 м и т. д.), на концах ВЛ и на концах прямых ее участков. Анкерные опоры на прямых участках трассы ВЛ при подвеске проводов с обеих сторон от опоры с одинаковыми тяжениями в нормальных режимах работы ВЛ выполняют те же функции, что и про­межуточные опоры. Но анкерные опоры рассчитываются также и на восприятие значительных тяжений по проводам и тросам при обрыве части из них в примыкающем пролете. Анкерные опоры значительно сложнее и дороже промежу­точных и поэтому число их на каждой линии должно быть минимальным.

В наихудших условиях находятся концевые анкерные опоры, устанавливаемые при выходе линии с электростан­ции или на подходах к подстанции. Эти опоры испытывают одностороннее тяжение всех проводов со стороны линии, так как тяжение проводов со стороны портала подстанции незначительно.

2. Промежуточные прямые опоры устанавливаются на прямых участках ВЛ для поддержания провода в анкерном пролете. Промежуточная опора дешевле и проще в изго­товлении, чем анкерная, так как благодаря одинаковому тяжению проводов по обеим сторонам она при необорван­ных проводах, т. е. в нормальном режиме, не испытывает усилий вдоль линии. Промежуточные опоры составляют не менее 80-90 % общего числа опор ВЛ.

3. Угловые опоры устанавливают в точках поворота линии.

Кроме нагрузок, воспринимаемых промежуточными прямыми опорами, на угловые опоры действуют также нагрузки от поперечных состав­ляющих тяжения проводов и тросов. Чаще всего при углах поворота линий до 20° применяют угловые опоры анкер­ного типа (см. рис. 1.). При углах поворота линии элек­тропередачи более 20° вес промежуточных угловых опор значительно возрастает.

Рис. 1. Схема анкерного пролета ВЛ и пролета пересечения с желез­ной дорогой.

4. Деревянные опоры широко применяют на ВЛ до 110кВ включительно. Разработаны деревянные опоры также и для ВЛ 220 кВ, но они не нашли широкого распространения. Достоинства этих опор - малая стоимость (в районах, располагающих лесными ресурсами) и простота изготовления. Недостаток - подверженность древесины гниению, особенно в месте соприкосновения с почвой. Эффективное средство против гниения - пропитка специальными антисептиками.

Опоры делают в большинстве случаев составными. Нога опоры состоит из двух частей длинной (стойки) и короткой (пасынка). Пасынок соединяют со стойкой двумя бандажами из стальной проволоки. Анкерные и промежуточные угловые опоры для ВЛ 6-10 кВ выполняются в виде А-образной конструкции.

Промежуточная опора представляет собой портал, имеющий две стойки с ветровыми связями и горизонтальную траверсу. Анкерные угловые опоры для В Л 35-110 кВ выполняются в виде пространственных А-П-образных конструкций.

5. Металлические опоры (стальные), применяемые на линиях электропередачи напряжением 35 кВ и выше , достаточно металлоемкие и требуют окраски в процессе эксплуатации для защиты от коррозии. Устанавливают металлические опоры на железобетонных фундаментах. Наиболее распространенная конструкция опоры 500 кВ - портал на оттяжках (рис.2). Для линии 750 кВ применяются как портальные опоры на оттяжках, так и V-образные опоры типа «Набла» с расщепленными оттяжками. Для использования на линиях 1150 кВ в кон­кретных условиях разработан ряд конструкций опор - пор­тальные, V-образные, с вантовой траверсой. Основным ти­пом промежуточных опор для линий 1150 кВ являются V-образные опоры на оттяжках с горизонтальным распо­ложением проводов (рис.2). Линию постоянного тока напряжением 1500 (±750) кВ Экибастуз-Центр проекти­руют на металлических опорах (рис.2).

Рис.2. Металлические опоры:

а - промежуточная одноцепная на оттяжках 500 кВ; б - промежуточная V-образная 1150 кВ; в - промежуточная опора ВЛ постоянного тока 1500 кВ; г - элементы пространственных решетчатых конструкций

6. Железобетонные опоры долговечнее деревянных, требу­ют меньше металла, чем металлические, просты в обслуживании и поэтому широко применяются на ВЛ до 500 кВ включительно. Проведена унификация конструкций металли­ческих и железобетонных опор для ВЛ 35-500 кВ. В ре­зультате сокращено число типов и конструкций опор и их деталей. Это позволило серийно производить опоры на за­водах, что ускорило и удешевило сооружение линий.

Типы опор

Воздушные линии электропередачи. Опорные конструкции.

Опоры и фундаменты на воздушные линии электропередач напряжением 35-110 кВ имеют значительный удельный вес как в части материалоёмкости, так и в стоимостном отношении. Достаточно сказать, что стоимость смонтированных опорных конструкций на этих воздушных линиях составляет, как правило, 60-70 % полной стоимости сооружения воздушных линий электропередач. Для линий, расположенных на промышленных предприятиях и непосредственно прилегающих к ним территориях, этот процент может быть ещё выше.

Опоры воздушной линии предназначены для поддержания проводов линий на определённом расстоянии от земли, обеспечивающем безопасность людей и надёжную работу линии.

Опоры воздушных линий электропередач делятся на анкерные и промежуточные. Опоры этих двух групп различаются способом подвески проводов.

Анкерные опоры полностью воспринимают тяжение проводов и тросов в смежных с опорой пролётах, т.е. служат для натяжения проводов. На этих опорах провода подвешиваются с помощью подвесных гирлянд. Опоры анкерного типа могут быть нормальной и облегчённой конструкции. Анкерные опоры значительно сложнее и дороже промежуточных и поэтому число их на каждой линии должно быть минимальным.

Промежуточные опоры не воспринимают тяжение проводов или воспринимают его частично. На промежуточных опорах провода подвешиваются с помощью поддерживающих гирлянд изоляторов, рис. 1.

Рис. 1. Схема анкерного пролёта воздушной линии и пролёта пересечения с железной дорогой

На базе анкерных опор могут выполняться концевые и транспозиционные опоры. Промежуточные и анкерные опоры могут бытьпрямыми и угловыми .

Концевые анкерные опоры, устанавливаемые при выходе линии с электростанции или на подходах к подстанции, находятся в наихудших условиях. Эти опоры испытывают одностороннее тяжение всех проводов со стороны линии, так как тяжение со стороны портала подстанции незначительно.

Промежуточные прямые опоры устанавливаются на прямых участках воздушных линий электропередач для поддержания проводов. Промежуточная опора дешевле и проще в изготовлении, чем анкерная, так как в нормальном режиме не испытывает усилий вдоль линии. Промежуточные опоры составляют не менее 80-90 % общего числа опор воздушных линий.

Угловые опоры устанавливаются в точках поворота линии. При углах поворота линии до 20 о применяют угловые опоры анкерного типа. При углах поворота линии электропередачи более 20 о – промежуточные угловые опоры.

На воздушных линиях электропередач применяются специальные опоры следующих типов: транспозиционные – для изменения порядка расположения проводов на опорах; ответвительные – для выполнения ответвлений от основной линии; переходные – для пересечения рек, ущелий и т.д.

Транспозицию применяют на линиях напряжением 110 кВ и выше протяжённостью более 100 км для того, чтобы сделать ёмкость и индуктивность всех трёх фаз цепи воздушных линий электропередач одинаковыми. При этом последовательно меняют на опорах взаимное расположение проводов по отношению друг к другу. Однако такое тройное перемещение проводов называют циклом транспозиции. Линия делится на три участка (шага), на которых каждый из трёх проводов занимает все три возможных положения, рис. 2.

Основные сведения

Несколько нетиповых опор линии электропередачи.

Верхняя часть железобетонной опоры ЛЭП (220/380 В)

Опоры ЛЭП предназначены для сооружений линий электропередач при расчётной температуре наружного воздуха до –65 °C и являются одним из главных конструктивных элементов ЛЭП, отвечающим за крепление и подвеску электрических проводов на определённом уровне.

В зависимости от способа подвески проводов опоры делятся на две основные группы:

  • опоры промежуточные, на которых провода закрепляются в поддерживающих зажимах;
  • опоры анкерного типа, служащие для натяжения проводов; на этих опорах провода закрепляются в натяжных зажимах.

Эти виды опор делятся на типы, имеющие специальное назначение.

  • Промежуточные прямые опоры устанавливаются на прямых участках линии. На промежуточных опорах с подвесными изоляторами провода закрепляются в поддерживающих гирляндах, висящих вертикально; на опорах со штыревыми изоляторами закрепление проводов производится проволочной вязкой. В обоих случаях промежуточные опоры воспринимают горизонтальные нагрузки от давления ветра на провода и на опору и вертикальные - от веса проводов, изоляторов и собственного веса опоры.
  • Промежуточные угловые опоры устанавливаются на углах поворота линии с подвеской проводов в поддерживающих гирляндах. Помимо нагрузок, действующих на промежуточные прямые опоры, промежуточные и анкерно-угловые опоры воспринимают также нагрузки от поперечных составляющих тяжения проводов и тросов. При углах поворота линии электропередачи более 20° вес промежуточных угловых опор значительно возрастает. При больших углах поворота устанавливаются анкерно угловые опоры.

При установке анкерных опор на прямых участках трассы и подвеске проводов с обеих сторон от опоры с одинаковыми тяжениями горизонтальные продольные нагрузки от проводов уравновешиваются и анкерная опора работает так же, как и промежуточная, то есть воспринимает только горизонтальные поперечные и вертикальные нагрузки. В случае необходимости провода с одной и с другой стороны от опоры можно натягивать с различным тяжением проводов. В этом случае, кроме горизонтальных поперечных и вертикальных нагрузок, на опору будет воздействовать горизонтальная продольная нагрузка.

При установке анкерных опор на углах анкерно угловые опоры воспринимают нагрузку также от поперечных составляющих тяжения проводов и тросов.

Концевые опоры устанавливаются на концах линии. От этих опор отходят провода, подвешиваемые на порталах подстанций.

Помимо перечисленных типов опор, на линиях применяются также специальные опоры: транспозиционные, служащие для изменения порядка расположения проводов на опорах; ответвительные - для выполнения ответвлений от основной линии; опоры больших переходов через реки и водные пространства и т. д.

На линиях электропередач применяются деревянные, стальные и железобетонные опоры. Разработаны также опытные конструкции из алюминиевых сплавов.

Сталь является основным материалом, из которого изготавливаются металлические опоры и различные детали (траверсы, тросостойки, оттяжки) опор. Достоинством стальных опор по сравнению с железобетонными является их высокая прочность при малой массе.

По конструктивному решению ствола стальные опоры могут быть отнесены к двум основным схемам - башенным (одностоечным) и портальным, по способу закрепления на фундаментах - к свободностоящим опорам и опорам на оттяжках, по способу соединения элементов разделяются на сварные и болтовые.

Опоры изготавливаются из стального уголкового проката, причем в подавляющем большинстве случаев применяется равнобокий уголок, высокие переходные опоры могут быть изготовлены из стальных труб.

В СНГ насчитывается несколько основных центров производства стальных конструкций опор ЛЭП - центральный, уральский и сибирский.

Классификация опор

По назначению

Концевая анкерная опора

  • Промежуточные опоры устанавливаются на прямых участках трассы ВЛ , предназначены только для поддержания проводов и тросов и не рассчитаны на нагрузки от тяжения проводов вдоль линии. Обычно составляют 80-90 % всех опор ВЛ.
  • Угловые опоры устанавливаются на углах поворота трассы ВЛ, при нормальных условиях воспринимают равнодействующую сил натяжения проводов и тросов смежных пролётов, направленную по биссектрисе угла, дополняющего угол поворота линии на 180°. При небольших углах поворота (до 15-30°), где нагрузки невелики, используют угловые промежуточные опоры. Если углы поворота больше, то применяют угловые анкерные опоры, имеющие более жёсткую конструкцию и анкерное крепление проводов.
  • Анкерные опоры устанавливаются на прямых участках трассы для перехода через инженерные сооружения или естественные преграды, воспринимают продольную нагрузку от тяжения проводов и тросов. Их конструкция отличается жесткостью и прочностью.
  • Концевые опоры - разновидность анкерных и устанавливаются в конце или начале линии. При нормальных условиях работы ВЛ они воспринимают нагрузку от одностороннего натяжения проводов и тросов.
  • Специальные опоры : транспозиционные - для изменения порядка расположения проводов на опорах; ответвлительные - для устройства ответвлений от магистральной линии; перекрёстные - при пересечении ВЛ двух направлений; противоветровые - для усиления механической прочности ВЛ; переходные - при переходах ВЛ через инженерные сооружения или естественные преграды.

По способу закрепления в грунте

  • Опоры, устанавливаемые непосредственно в грунт
  • Опоры, устанавливаемые на фундаменты

Специальная концевая опора - переход от воздушной линии к подземной кабельной линии

По конструкции

  • Свободностоя́щие опоры
  • Опоры с оттяжками

По количеству цепей

  • Одноцепные
  • Двухцепные
  • Многоцепные

По напряжению

Опоры подразделяются на опоры для линий 0,4, 6, 10, 35, 110, 220, 330, 500, 750, 1150 кВ. Отличаются эти группы опор размерами и весом. Чем больше напряжение, тем выше опоры, длиннее её траверсы и больше её вес. Увеличение размеров опоры вызвано необходимостью получения нужных расстояний от провода до тела опоры и до земли, соответствующих ПУЭ для различных напряжений линий.

По материалу изготовления

Железобетонная опора

  • Железобетонные - выполняют из бетона, армированного металлом. Для линий 35-110 кВ и выше обычно применяют опоры из центрифугированного бетона. Достоинством железобетонных опор является их стойкость в отношении коррозии и воздействия химических реагентов, находящихся в воздухе.
  • Металлические - выполняют из стали специальных марок. Отдельные элементы соединяют сваркой или болтами. Для предотвращения окисления и коррозии поверхность металлических опор оцинковывают или периодически окрашивают специальными красками.
  • Металлические решётчатые опоры
  • Металлические многогранные опоры
  • Деревянные - выполняют из круглых брёвен. Наиболее распространены сосновые опоры и несколько меньше опоры из лиственницы. Деревянные опоры применяют для линий напряжением до 220/380 В включительно в СНГ и до 345 В в США, однако кое-где до сих пор можно увидеть применение деревянных опор в линиях 6, 10 и 35 кВ. Основные достоинства этих опор - малая стоимость (при наличии местной древесины) и простота изготовления. Основной недостаток - гниение древесины, особенно интенсивное в месте соприкосновения опоры с почвой. Пропитка древесины специальным антисептиками увеличивает срок её службы с 4-6 до 15-25 лет. Для увеличения срока службы деревянную опору обычно выполняют не из целого бревна, а составной: из более длинной основной стойки и короткого стула, пасынка, или железобетонной стойки. Стул скрепляют с основной стойкой при помощи проволочного бандажа. Широко применяют составные деревянные опоры с железобетонными стульями. Деревянные опоры выполняют А-образными или П-образными. П-образная конструкция является более устойчивой, но требует бо́льших капиталовложений из-за повышенного расхода материала по сравнению с А-образной.

Срок службы железобетонных и металлических оцинкованных или периодически окрашиваемых опор достигает 50 лет и более. Стоимость металлических и железобетонных опор значительно превышает стоимость деревянных опор. Выбор того или иного материала для опор обусловливается экономическими соображениями, а также наличием соответствующего материала в районе сооружения линии.

Унификация опор

На основании многолетней практики строительства, проектирования и эксплуатации ВЛ определяются наиболее целесообразные и экономичные типы и конструкции опор для соответствующих климатических и географических районов и проводится их унификация.

Обозначение опор

Для металлических и железобетонных опор ВЛ 35-330 кВ в СНГ принята следующая система обозначения.

Цифры после букв обозначают класс напряжения. Наличие буквы «т» указывает на тросостойку с двумя тросами, буквы «п» - на изменение взаимного расположения проводов на опоре (обычно заключается в переносе проводов верхнего или нижнего яруса на средний ярус). Цифра через дефис указывает количество цепей: нечётное - одноцепная линия, четное - двух и многоцепные, или типоисполнение опоры. Цифра через «+» означает высоту приставки к базовой опоре (применимо к металлическим опорам). Cистема обозначений иногда нарушается заводами-изготовителями.

  • У110-2+14 - металлическая анкерно-угловая двухцепная опора с подставкой 14 м;
  • УС110-3 - металлическая анкерно-угловая одноцепная специальная (с горизонтальным расположением проводов) опора;
  • УС110-5 - металлическая анкерно-угловая одноцепная специальная (для городской застройки - с уменьшенной базой и увеличенной высотой подвеса) опора (геометрически аналогична опоре У110-2+5);
  • ПМ220-1 - промежуточная металлическая многогранная одноцепная опора;
  • У220-2т - металлическая анкерно-угловая двухцепная опора с двумя тросами;
  • ПБ110-4 - промежуточная железобетонная двухцепная опора;
  • ПМ110-4ф - промежуточная металлическая многогранная двухцепная опора с конструктивно отдельным фундаментом. У другого изготовителя имеет маркировку ППМ110-2 (переходная), хотя конструктивно аналогичная

Проектирование

  • Научно-исследовательская лаборатория конструкций электросетевого строительства (НИЛКЭС), входит в состав СевЗап НТЦ .
  • НТЦ электроэнергетики (ранее РОСЭП)

Самые высокие опоры

В настоящее время самые высокие опоры установлены на переходе через реку Янцзы в Китае в местечке Янгун (Jiangyin). Место установки опор 31.971389 , 120.053333 31°58′17″ с. ш. 120°03′12″ в. д.  /  31.971389° с. ш. 120.053333° в. д. (G) (O) и на 31.951111 , 120.048056 31°57′04″ с. ш. 120°02′53″ в. д.  /  31.951111° с. ш. 120.048056° в. д. (G) (O) на ВЛ 500кВ. Высота обеих опор составляет 346,5 метров, каждая имеет вес 4192 т. Переход, построенный в апреле 2004 года, имеет длину 2303 м.

См. также

Литература

  • Электромонтажные работы. В 11 кн. Кн. 8. Ч. 1. Воздушные линии электропередачи: Учеб. пособие для ПТУ. / Магидин Ф. А.; Под ред. А. Н. Трифонова. - М.: Высшая школа, 1991. - 208 с. ISBN 5-06-001074-0 .
  • Мельников Н. А. Электрические сети и системы. - М.: Энергия, 1969. - 456 с.
  • Крюков К. П. , Новгородцев Б. П. Конструкции и механический расчет линий электропередачи. - 2-е изд., перераб. и доп. - Л.: Энергия, Ленингр. отд-ние, 1979. - 312 с.
  • ИОЛИТ М Каталог описаний и чертежей опор воздушных линий . Архивировано из первоисточника 18 октября 2012. Проверено 28 сентября 2012.

Ссылки

  • Опоры линий электропередачи будут выглядеть по-человечески . статья о дизайнерском конкурсе фирмы Landsnet . Мембрана (2 сентября 2010). Архивировано из первоисточника 19 мая 2012.

Основными элементами воздушных линий являются провода, изоляторы, линейная арматура, опоры и фундаменты. На воздушных линиях переменного трехфазного тока подвешивают не менее трех проводов, составляющих одну цепь; на воздушных линиях постоянного тока - не менее двух проводов.

По количеству цепей ВЛ подразделяются на одно, двух и многоцепные. Количество цепей определяется схемой электроснабжения и необходимостью ее резервирования. Если по схеме электроснабжения требуются две цепи, то эти цепи могут быть подвешены на двух отдельных одноцепных ВЛ с одноцепными опорами или на одной двухцепной ВЛ с двухцепными опорами. Расстояние / между соседними опорами называют пролетом, а расстояние между опорами анкерного типа - анкерным участком.

Провода, подвешиваемые на изоляторах (А, - длина гирлянды) к опорам (рис. 5.1, а), провисают по цепной линии. Расстояние от точки подвеса до низшей точки провода называется стрелой провеса /. Она определяет габарит приближения провода к земле А, который для населенной местности равен: до поверхности земли до 35 и ПО кВ - 7 м; 220 кВ - 8 м; до зданий или сооружений до 35 кВ - 3 м; 110 кВ - 4 м; 220 кВ - 5 м. Длина пролета / определяется экономическими условиями. Длина пролета до 1 кВ обычно составляет 30…75 м; ПО кВ - 150…200 м; 220 кВ - до 400 м.

Разновидности опор электропередач

В зависимости от способа подвески проводов опоры бывают:

  1. промежуточные, на которых провода закрепляют в поддерживающих зажимах;
  2. анкерного типа, служащие для натяжения проводов; на этихопорах провода закрепляют в натяжных зажимах;
  3. угловые, которые устанавливают на углах поворота ВЛ с подвеской проводов в поддерживающих зажимах; они могут быть промежуточные, ответвительные и угловые, концевые, анкерные угловые.

Укрупнено же опоры ВЛ выше 1 кВ подразделяются на два вида анкерные, полностью воспринимающие тяжение проводов и тросов в смежных пролетах; промежуточные, не воспринимающие тяжение проводов или воспринимающие частично.

На ВЛ применяют деревянные опоры (рис. 5Л, б, в), деревянные опоры нового поколения (рис. 5.1, г), стальные (рис. 5.1, д) и железобетонные опоры.

Деревянные опоры ВЛ

Деревянные опоры ВЛ все еще имеют распространение в странах, располагающих лесными запасами. Достоинствами дерева как материала для опор являются: небольшой удельный вес, высокая механическая прочность, хорошие электроизоляционные свойства, природный круглый сортамент. Недостатком древесины является ее гниение, для уменьшения которого применяют антисептики.

Эффективным методом борьбы с гниением является пропитка древесины маслянистыми антисептиками. В США осуществляется переход к деревянным клееным опорам.

Для ВЛ напряжением 20 и 35 кВ, на которых применяют штыревые изоляторы, целесообразно применение одностоечных свечеобразных опор с треугольным расположением проводов. На воздушных ЛЭП 6 -35 кВ со штыревыми изоляторами при любом расположении проводов расстояние между ними D, м, должно быть не меньше значений, определяемых по формуле


где U - линии, кВ; - наибольшая стрела провеса, соответствующая габаритному пролету, м; Ь - толщина стенки гололеда, мм (не более 20 мм).

Для ВЛ 35 кВ и выше с подвесными изоляторами при горизонтальном расположении проводов минимальное расстояние между проводами, м, определяется по формуле


Стойку опоры выполняют составной: верхнюю часть (собственно стойку) - из бревен длиной 6,5…8,5 м, а нижнюю часть (так называемый пасынок) - из железобетона сечением 20 х 20 см, длиной 4,25 и 6,25 м или из бревен длиной 4,5…6,5 м. Составные опоры с железобетонным пасынком сочетают в себе преимущества железобетонных и деревянных опор: грозоустойчивость и сопротивляемость гниению в месте касания с грунтом. Соединение стойки с пасынком выполняют проволочными бандажами из стальной проволоки диаметром 4…6 мм, натягиваемой при помощи скрутки или натяжным болтом.

Анкерные и промежуточные угловые опоры для ВЛ 6 - 10 кВ выполняют в виде Аобразной конструкции с составными стойками.

Стальные опоры электропередачи

Широко применяют на ВЛ напряжением 35 кВ и выше.

По конструктивному исполнению стальные опоры могут быть двух видов:

  1. башенные или одностоечные (см. рис. 5.1, д);
  2. портальные, которые по способу закрепления подразделяютсяна свободностоящие опоры и опоры на оттяжках.

Достоинством стальных опор является их высокая прочность, недостатком - подверженность коррозии, что требует при эксплуатации проведения периодической окраски или нанесения антикоррозийного покрытия.

Опоры изготавливают из стального углового проката (в основном применяют равнобокий уголок); высокие переходные опоры могут быть изготовлены из стальных труб. В узлах соединения элементов применяют стальной лист различной толщины. Независимо от конструктивного исполнения стальные опоры выполняют в виде пространственных решетчатых конструкций.

Железобетонные опоры электропередачи

По сравнению с металлическими более долговечны и экономичны в эксплуатации, так как требуют меньше ухода и ремонта (если брать жизненный цикл, то железобетонные - более энергозатратны). Основное преимущество железобетонных опор - уменьшение расхода стали на 40…75%, недостаток - большая масса. По способу изготовления железобетонные опоры подразделяются на бетонируемые на месте установки (большей частью такие опоры применяют зарубежом) и заводского изготовления.

Крепление траверс к стволу стойки железобетонной опоры выполняют с помощью болтов, пропущенных через специальные отверстия в стойке, или с помощью стальных хомутов, охватывающих ствол и имеющих цапфы для крепления на них концов поясов траверс. Металлические траверсы предварительно подвергают горячей оцинковке, поэтому они долгое время не требуют при эксплуатации специального ухода и наблюдения.

Провода воздушных линий выполняют неизолированными, состоящими из одной или нескольких свитых проволок. Провода из одной проволоки, называемые однопроволочными (их изготавливают сечением от 1 до 10 мм2), имеют меньшую прочность и применяются только на ВЛ напряжением до 1 кВ. Многопроволочные провода, свитые из нескольких проволок, применяются на ВЛ всех напряжений.

Материалы проводов и тросов должны иметь высокую электрическую проводимость, обладать достаточной прочностью, выдерживать атмосферные воздействия (в этом отношении наибольшей стойкостью обладают медные и бронзовые провода; провода из алюминия подвержены коррозии, особенно на морских побережьях, где в воздухе содержатся соли; стальные провода разрушаются даже в нормальных атмосферных условиях).

Для ВЛ применяют однопроволочные стальные провода диаметром 3,5; 4 и 5 мм и медные провода диаметром до 10 мм. Ограничение нижнего предела обусловлено тем, что провода меньшего диаметра имеют недостаточную механическую прочность. Верхний предел ограничен из-за того, что изгибы однопроволочного провода большего диаметра могут вызвать в его внешних слоях такие остаточные деформации, которые будут снижать его механическую прочность.

Многопроволочные провода, скрученные из нескольких проволок, обладают большой гибкостью; такие провода могут выполняться любым сечением (их изготавливают сечением от 1,0 до 500 мм2).

Диаметры отдельных проволок и их количество подбирают так, чтобы сумма поперечных сечений отдельных проволок дала требуемое общее сечение провода.

Как правило, многопроволочные провода изготавливают из круглых проволок, причем в центре помещается одна или несколько проволок одинакового диаметра. Длина скрученной проволоки немного больше длины провода, измеренной по его оси. Это вызывает увеличение фактической массы провода на 1 …2 % по сравнению с теоретической массой, которая получается при умножении сечения провода на длину и плотность. Во всех расчетах принимается фактическая масса провода, указанная в соответствующих стандартах.

Марки неизолированных проводов обозначают:

  • буквами М, А, АС, ПС - материал провода;
  • цифрами - сечение в квадратных миллиметрах.

Алюминиевая проволока А может быть:

  • марки AT (твердой неоттоженной)
  • AM (отожженной мягкой) сплавов АН, АЖ;
  • АС, АСХС - из стального сердечника и алюминиевых проволок;
  • ПС - из стальных проволок;
  • ПСТ - из стальной оцинкованной проволоки.

Например, А50 обозначает алюминиевый провод, сечение которого равно 50 мм2;

  • АС50/8 - сталеалюминевый провод сечением алюминиевой части 50 мм2, стального сердечника 8 мм2 (в электрических расчетах учитывается проводимость только алюминиевой части провода);
  • ПСТЗ,5, ПСТ4, ПСТ5 - однопроволочные стальные провода, где цифры соответствуют диаметру провода в миллиметрах.

Стальные тросы, применяемые на ВЛ в качестве грозозащитных, изготавливают из оцинкованной проволоки; их сечение должно быть не менее 25 мм2. На ВЛ напряжением 35 кВ применяют тросы сечением 35 мм2; на линиях ПО кВ - 50 мм2; на линиях 220 кВ и выше -70 мм2.

Сечение многопроволочных проводов различных марок определяется для ВЛ напряжением до 35 кВ по условиям механической прочности, а для ВЛ напряжением ПО кВ и выше - по условиям потерь на корону. На ВЛ при пересечении различных инженерных сооружений (линий связи, железных и шоссейных дорог и т.д.) необходимо обеспечивать более высокую надежность, поэтому минимальные сечения проводов в пролетах пересечений должны быть увеличены (табл. 5.2).

При обтекании проводов потоком воздуха, направленным поперек оси ВЛ или под некоторым углом к этой оси, с подветренной стороны провода возникают завихрения. При совпадении частоты образования и перемещения вихрей с одной из частот собственных колебаний провод начинает колебаться в вертикальной плоскости.

Такие колебания провода с амплитудой 2…35 мм, длиной волны 1…20 м и частотой 5…60 Гц называются вибрацией.

Обычно вибрация проводов наблюдается при скорости ветра 0,6… 12,0 м/с;

Стальные провода не допускаются в пролетах над трубопроводами и железными дорогами.



Вибрация, как правило, имеет место в пролетах длиной более 120 м и на открытой местности. Опасность вибрации заключается в обрыве отдельных проволок провода на участках их выхода из зажимов изза повышения механического напряжения. Возникают переменные от периодических изгибов проволок в результате вибрации и сохраняются в подвешенном проводе основные растягивающие напряжения.

В пролетах длиной до 120 м защиты от вибрации не требуется; не подлежат защите и участки любых ВЛ, защищенных от поперечных ветров; на больших переходах рек и водных пространств требуется защита независимо от в проводах. На ВЛ напряжением 35 …220 кВ и выше защиту от вибрации выполняют путем установки виброгасителей, подвешенных на стальном тросе, поглощающих энергию вибрирующих проводов с уменьшением амплитуды вибрации около зажимов.

При гололеде наблюдается так называемая пляска проводов, которая, так же как и вибрация, возбуждается ветром, но отличается от вибрации большей амплитудой, достигающей 12… 14 м, и большей длиной волны (с одной и двумя полуволнами в пролете). В плоскости, перпендикулярной оси ВЛ, провод На напряжении 35 - 220 кВ провода изолируют от опор гирляндами подвесных изоляторов. Для изоляции ВЛ 6 -35 кВ применяют штыревые изоляторы.

Проходя по проводам ВЛ, выделяет теплоту и нагревает провод. Под влиянием нагрева провода происходят:

  1. удлинение провода, увеличение стрелы провеса, изменение расстояния до земли;
  2. изменение натяжения провода и его способности нести механическую нагрузку;
  3. изменение сопротивления провода, т. е. изменение потерь электрической мощности и энергии.

Все условия могут изменяться при наличии постоянства параметров окружающей среды или изменяться совместно, воздействуя на работу провода ВЛ. При эксплуатации ВЛ считают, что при номинальном токе нагрузки температура провода составляет 60…70″С. Температура провода будет определяться одновременным воздействием тепловыделения и охлаждения или теплоотвода. Теплоотвод проводов ВЛ возрастает с увеличением скорости ветра и понижением температуры окружающего воздуха.

При уменьшении температуры воздуха от +40 до 40 °С и увеличении скорости ветра от 1 до 20 м/с тепловые потери изменяются от 50 до 1000 Вт/м. При положительных температурах окружающего воздуха (0…40 °С) и незначительных скоростях ветра (1 …5 м/с) тепловые потери составляют 75…200 Вт/м.

Для определения воздействия перегрузки на увеличение потерь сначала определяется


где RQ - сопротивление провода при температуре 02, Ом; R0] - сопротивление провода при температуре, соответствующей расчетной нагрузке в условиях эксплуатации, Ом; А/.у.с - коэффициент температурного увеличения сопротивления, Ом/°С.

Увеличение сопротивления провода по сравнению с сопротивлением, соответствующим расчетной нагрузке, возможно при перегрузке 30 % на 12 %, а при перегрузке 50 % - на 16 %

Увеличения потери AUпри перегрузке до 30 % можно ожидать:

  1. при расчете ВЛ на AU =5% А?/30 = 5,6%;
  2. при расчете ВЛ на А17= 10 % Д?/30 = 11,2 %.

При перегрузке ВЛ до 50 % увеличение потери будет равно соответственно 5,8 и 11,6 %. Учитывая график нагрузки, можно отметить, что при перегрузке ВЛ до 50 % потери кратковременно превышают допустимые нормативные значения на 0,8… 1,6 %, что существенно не влияет на качество электроэнергии.

Применение провода СИП

С начала века получили распространение низковольтные воздушные сети, выполненные как самонесущая система изолированных проводов (СИП).

Используется СИП в городах как обязательнаяпрокладка, как магистраль в сельских зонах со слабой плотностью населения, ответвления к потребителям. Способы прокладки СИП различны: натягивание на опорах; натягивание по фасадам зданий; прокладка вдоль фасадов.

Конструкция СИП (униполярных бронированных и небронированных, триполярных с изолированной или голой несущей нейтралью) в общем случае состоит из медной или алюминиевой проводниковой многопроволочной жилы, окруженной внутренним полупроводниковым экструдированным экраном, затем - изоляцией из шитого полиэтилена, полиэтилена или ПВХ. Герметичность обеспечивается порошком и компаундированной лентой, поверх которых расположен металлический экран из меди или алюминия в виде спирально уложенных нитей или ленты, с использованием экструдированного свинца.

Поверх подушки кабельной брони, выполненной из бумаги, ПВХ, полиэтилена, делают броню из алюминия в виде сетки из полосок и нитей. Внешняя защита выполнена из ПВХ, полиэтилена без гелогена. Пролеты прокладки, рассчитанные с учетом ее температуры и сечения проводов (не менее 25 мм2 для магистралей и 16 мм2 на ответвлениях к вводам для потребителей, 10 мм2 для сталеалюминиевого провода) составляют от 40 до 90 м.

При небольшом повышении затрат (около 20 %) по сравнению с неизолированными проводами надежность и безопасность линии, оснащенной СИП, повышается до уровня надежности и безопасности кабельных линий. Одним из преимуществ воздушных линий с изолированными проводами ВЛИ перед обычными ЛЭП является снижение потерь и мощности за счет уменьшения реактивного сопротивления. Параметры прямой последовательности линий:

  • АСБ95 - R = 0,31 Ом/км; Х= 0,078 Ом/км;
  • СИП495 - соответственно 0,33 и 0,078 Ом/км;
  • СИП4120 - 0,26 и 0,078 Ом/км;
  • АС120 - 0,27 и 0,29 Ом/км.

Эффект от снижения потерь при применении СИП и неизменности тока нагрузки может составлять от 9 до 47 %, потерь мощности - 18 %.

Услуги по изготовлению металлоконструкций опор ЛЭП, производству металлоизделий, услуги по металлообработке на заказ предоставляются компанией "Схид-будконструкция", Украина.

Какие типы опор ЛЭП существуют?

При производстве металлоконструкций ЛЭП различают сдующие типы опор ВЛ: промежуточные опоры ЛЭП, анкерные опоры ЛЭП , угловые опоры ЛЭП и специальные металлоизделия для ЛЭП.
Разновидности типов конструкций воздушных линий электропередач, являющиеся наиболее многочисленными на всех ЛЭП, это промежуточные опоры, которые предназначены для поддерживания проводов на прямых участках трассы. Все высоковольтные провода крепятся к траверсам ЛЭП через поддерживающие гирлянды изоляторов и другие конструктивные элементы воздушных линий электропередач. В нормальном режиме опоры ВЛ этого типа воспринимают нагрузки от веса смежных полупролетов проводов и тросов, веса изоляторов, линейной арматуры и отдельных элементов опор, а также ветровые нагрузки, обусловленные давлением ветра на провода, тросы и саму металлоконструкцию ЛЭП. В аварийном режиме конструкции промежуточных опор ЛЭП должны выдерживать напряжения, возникающие при обрыве одного провода или троса.

Расстояние между двумя соседними промежуточными опорами ВЛ называется промежуточным пролетом.
Угловые опоры ВЛ могут быть промежуточными и анкерными. Промежуточные угловые элементы ЛЭП применяют обычно при небольших углах поворота трассы (до 20°).
Устанавливаются анкерные или промежуточные угловые элементы ЛЭП на участках трассы линии, где меняется ее направление.
Промежуточные угловые опоры ВЛ в нормальном режиме, кроме нагрузок, действующих на обычные промежуточные элементы ЛЭП, воспринимают суммарные усилия от тяжения проводов и тросов в смежных пролетах, приложенные в точках их подвеса по биссектрисе угла поворота линии ЛЭП.
Число анкерных угловых опор ВЛ составляет обычно небольшой процент от общего числа на линии (10… 15%). Применение их обуславливается условиями монтажа линий, требованиями, предъявляемыми к пересечениям линий с различными объектами, естественными препятствиями, т. е. они применяются, например в горной местности, а также когда промежуточные угловые элементы не обеспечивают требуемой надежности. Используются анкерные угловые опоры и в качестве концевых, с которых провода линии идут в распределительное устройство подстанции или станции. На линиях, проходящих в населенной местности, число анкерных угловых элементов ЛЭП также увеличивается. Провода ВЛ крепятся через натяжные гирлянды изоляторов. В нормальном режиме на эти опоры леп , кроме нагрузок, указанных для промежуточных элементов леп, действуют разность тяжений по проводам и тросам в смежных пролетах и равнодействующая сил тяжения по проводам и тросам. Обычно все опоры анкерного типа устанавливаются так, чтобы равнодействующая сил тяжения была направлена по оси траверсы опоры. В аварийном режиме анкерные стойки ЛЭП должны выдерживать обрыв двух проводов или тросов.
Расстояние между двумя соседними анкерными опорами ЛЭП называют анкерным пролетом.
Ответвительные элементы ЛЭП предназначены для выполнения ответвлений от магистральных воздушных линий при необходимости электроснабжения потребителей, находящихся на некотором расстоянии от трассы.
Перекрестные элементы применяются для выполнения на них скрещивания проводов ВЛ двух направлений.
Концевые стойки ВЛ устанавливаются в начале и конце воздушной линии. Они воспринимают направленные вдоль линии усилия, создаваемые нормальным односторонним тяжением проводов.
Для воздушных линий применяются также анкерные опоры ЛЭП, имеющие повышенную по сравнению с перечисленными выше типами стойки прочность и более сложную конструкцию.
Для воздушных линий с напряжением до 1 кВ в основном применяются железобетонные стойки.

Какие бывают опоры ЛЭП? Классификация разновидностей

По способу закрепления в грунте классифицируют:

Опоры ВЛ, устанавливаемые непосредственно в грунт
- Опоры ЛЭП, устанавливаемые на фундаменты

Разновидности опор ЛЭП по конструкции:

Свободностоящие опоры ЛЭП
- Столбы с оттяжками

По количеству цепей классифицируют опоры ЛЭП:

Одноцепные
- Двухцепные
- Многоцепные

Унифицированные опоры ЛЭП

На основании многолетней практики строительства, проектирования и эксплуатации ВЛ определяются наиболее целесообразные и экономичные типы и конструкции опор для соответствующих климатических и географических районов и проводится их унификация.

Обозначение опор ЛЭП

Какие виды опор применяют для сооружения вл?

Для металлических и железобетонных опор ВЛ 10 - 330 кВ принята следующая система обозначения.

П, ПС - промежуточные опоры

ПВС - промежуточные опоры с внутренними связями

ПУ, ПУС - промежуточные угловые

ПП - промежуточные переходные

У, УС - анкерно-угловые

К, КС - концевые

Б - железобетонные

М - Многогранные

Опоры ВЛ как маркируются?

Цифры после букв в маркировке обозначают класс напряжения. Наличие буквы «т» указывает на тросостойку с двумя тросами. Цифра через дефис в маркировке опор ВЛ указывает количество цепей: нечётное, например единица в нумерации опоры ЛЭП - одноцепная линия, четное число в нумерации - двух и многоцепные. Цифра через «+» в нумерации означает высоту приставки к базовой опоре (применимо к металлическим).

Например, условные обозначения опор ВЛ:
У110-2+14 - Металлическая анкерно-угловая двухцепная опора с подставкой 14 метров
ПМ220-1 - Промежуточная металлическая многогранная одноцепная опора
У220-2т - Металлическая анкерно-угловая
ПБ110-4 - Промежуточная железобетонная

Чаще всего мы представляем себе опору ЛЭП в виде решетчатой конструкции. Лет 30 назад это был единственный вариант, да и в наши дни их продолжают строить. На место строительства привозят набор металлических уголков и шаг за шагом свинчивают из этих типовых элементов опору. Затем приезжает кран и ставит конструкцию вертикально. Такой процесс занимает довольно много времени, что сказывается на сроках прокладки линий, а сами эти опоры с унылыми решетчатыми силуэтами весьма недолговечны. Причина — слабая защита от коррозии. Технологическое несовершенство такой опоры дополняет простой бетонный фундамент. Если сделан он недобросовестно, например с применением раствора ненадлежащего качества, то спустя какое-то время бетон растрескается, в трещины попадет вода. Несколько циклов заморозки-оттаивания, и фундамент надо переделывать или серьезно ремонтировать.

Трубки вместо уголков

О том, что за альтернатива идет на смену традиционным опорам из черного металла, мы спросили представителей ПАО «Россети». «В нашей компании, которая является крупнейшим электросетевым оператором в России, — говорит специалист этой организации, — мы давно пытались найти решение проблем, связанных с решетчатыми опорами, и в конце 1990-х начали переходить на гранные опоры. Это цилиндрические стойки из гнутого профиля, фактически трубы, в поперечном сечении имеющие вид многогранника. Кроме того, мы стали применять новые методы антикоррозионной защиты, в основном метод горячего цинкования. Это электрохимический способ нанесения защитного покрытия на металл. В агрессивной среде слой цинка истончается, но несущая часть опоры остается невредимой».

Помимо большей долговечности новые опоры отличаются еще и простотой монтажа. Никаких уголков больше свинчивать не надо: трубчатые элементы будущей опоры просто вставляются друг в друга, затем соединение закрепляется. Смонтировать такую конструкцию можно в восемь-десять раз быстрее, чем собрать решетчатую. Соответствующие преобразования претерпели и фундаменты. Вместо обычного бетонного стали применять так называемые сваи-оболочки. Конструкция опускается в землю, к ней крепится ответный фланец, а на него уже ставится сама опора. Расчетный срок службы таких опор — до 70 лет, то есть примерно в два раза больше, чем у решетчатых.


Опоры электрических воздушных линий мы обычно представляем себе именно так. Однако классическая решетчатая конструкция постепенно уступает место более прогрессивным вариантам — многогранным опорам и опорам из композитных материалов.

Почему гудят провода

А провода? Они висят высоко над землей и издали похожи на толстые монолитные тросы. На самом деле высоковольтные провода свиты из проволоки. Обычный и повсеместно применяемый провод имеет стальной сердечник, который обеспечивает конструктивную прочность и находится в окружении алюминиевой проволоки, так называемых внешних повивов, через которые передается токовая нагрузка. Между сталью и алюминием проложена смазка. Она нужна для того, чтобы уменьшить трение между сталью и алюминием — материалами, имеющими разный коэффициент теплового расширения. Но поскольку алюминиевая проволока имеет круглое сечение, витки прилегают друг к другу неплотно, поверхность провода имеет выраженный рельеф. У этого недостатка есть два последствия. Во‑первых, в щели между витками проникает влага и вымывает смазку. Трение усиливается, и создаются условия для коррозии. В результате срок службы такого провода составляет не более 12 лет. Чтобы продлить срок службы, на провод порой надевают ремонтные манжеты, которые также могут стать причинами проблем (об этом чуть ниже). Кроме того, такая конструкция провода способствует созданию вблизи воздушной линии хорошо различимого гула. Происходит он из-за того, что переменное напряжение 50 Гц рождает переменное магнитное поле, которое заставляет отдельные жилы в проводе вибрировать, что влечет их соударения друг с другом, и мы слышим характерное гудение. В странах ЕС такой шум считается акустическим загрязнением, и с ним борются. Теперь такая борьба началась и у нас.


«Старые провода мы сейчас хотим заменить на провода новой конструкции, которую разрабатываем, — говорит представитель ПАО «Россети». — Это тоже сталь-алюминиевые провода, но проволока там применяется не круглого сечения, а скорее трапециевидного. Повив получается плотным, а поверхность провода гладкая, без щелей. Влага внутрь попасть почти не может, смазка не вымывается, сердечник не ржавеет, и срок службы такого провода приближается к тридцати годам. Провода схожей конструкции уже используются в таких странах, как Финляндия и Австрия. Линии с новыми проводами есть и в России — в Калужской области. Это линия «Орбита-Спутник» длиной 37 км. Причем там провода имеют не просто гладкую поверхность, но и другой сердечник. Он выполнен не из стали, а из стекловолокна. Такой провод легче, но прочнее на разрыв, чем обычный сталь-алюминиевый».

Однако самым последним конструкторским достижением в данной области можно считать провод, созданный американским концерном 3M. В этих проводах несущая способность обеспечивается только токопроводящими повивами. Там нет сердечника, но сами повивы армированы оксидом алюминия, чем достигается высокая прочность. У этого провода прекрасная несущая способность, и при стандартных опорах он за счет своей прочности и малого веса может выдерживать пролеты длиной до 700 м (стандарт 250−300 м). Кроме того, провод очень стоек к тепловым нагрузкам, что обусловливает его использование в южных штатах США и, например, в Италии. Однако у провода от 3M есть один существенный минус — слишком высокая цена.


Оригинальные «дизайнерские» опоры служат несомненным украшением ландшафта, однако вряд ли они получат широкое распространение. В приоритете у электросетевых компаний надежность передачи энергии, а не дорогостоящие «скульптуры».

Лед и струны

У воздушных линий электропередач есть свои естественные враги. Один из них — обледенение проводов. Особенно это бедствие характерно для южных районов России. При температуре около нуля капли измороси падают на провод и замерзают на нем. Происходит образование кристаллической шапки на верхней части провода. Но это только начало. Шапка под своей тяжестью постепенно проворачивает провод, подставляя замерзающей влаге другую сторону. Рано или поздно вокруг провода образуется ледяная муфта, и если вес муфты превысит 200 кг на метр, провод оборвется и кто-то останется без света. В компании «Россети» есть свое ноу-хау по борьбе со льдом. Участок линии с обледеневшими проводами отключается от линии, но подключается к источнику постоянного тока. При использовании постоянного тока омическое сопротивление провода можно практически не учитывать и пропускать токи, скажем, в два раза сильнее, чем расчетное значение для переменного тока. Провод нагревается, и лед плавится. Провода сбрасывают ненужный груз. Но если на проводах есть ремонтные муфты, то возникает дополнительное сопротивление, и вот тогда провод может и перегореть.


Другой враг — высокочастотные и низкочастотные колебания. Натянутый провод воздушной линии — это струна, которая под воздействием ветра начинает вибрировать с высокой частотой. Если эта частота совпадет с собственной частотой провода и произойдет совмещение амплитуд, провод может порваться. Чтобы справиться с данной проблемой, на линиях устанавливают специальные устройства — гасители вибрации, имеющие вид тросика с двумя грузиками. Эта конструкция, имеющая свою частоту колебаний, расстраивает амплитуды и гасит вибрацию.

С низкочастотными колебаниями связан такой вредный эффект, как «пляска проводов». Когда на линии происходит обрыв (например, из-за образовавшегося льда), возникают колебания проводов, которые идут волной дальше, через несколько пролетов. В результате могут погнуться или даже упасть пять-семь опор, составляющих анкерный пролет (расстояние между двумя опорами с жестким креплением провода). Известное средство борьбы с «пляской» — установление межфазных распорок между соседними проводами. При наличии распорки провода будут взаимно гасить свои колебания. Другой вариант — использование на линии опор из композитных материалов, в частности из стеклопластика. В отличие от металлических опор, композитная имеет свойство упругой деформации и легко «отыграет» колебания проводов, нагнувшись, а затем восстановив вертикальное положение. Такая опора может предотвратить каскадное падение целого участка линии.


На фото отчетливо видна разница между традиционным высоковольтным проводом и проводом новой конструкции. Вместо проволоки круглого сечения использована предварительно деформированная проволока, а место стального сердечника занял сердечник из композита.

Опоры-уникумы

Разумеется, существуют разного рода уникальные случаи, связанные с прокладкой воздушных линий. Например, при установке опор в обводненный грунт или в условиях вечной мерзлоты обычные сваи-оболочки для фундамента не подойдут. Тогда используются винтовые сваи, которые ввинчивают в грунт как шуруп, чтобы достичь максимально прочного основания. Особый случай — это прохождение ЛЭП широких водных преград. Там используются специальные высотные опоры, которые весят раз в десять больше обычных и имеют высоту 250−270 м. Поскольку длина пролета может составлять более двух километров, применяется особый провод с усиленным сердечником, который дополнительно поддерживается грузотросом. Так устроен, например, переход ЛЭП через Каму с длиной пролета 2250 м.


Отдельную группу опор представляют конструкции, призванные не только держать провода, но и нести в себе определенную эстетическую ценность, например опоры-скульптуры. В 2006 году компания «Россети» инициировала проект с целью разработать опоры с оригинальным дизайном. Были интересные работы, но авторы их, дизайнеры, часто не могли оценить возможность и технологичность инженерного воплощения этих конструкций. Вообще надо сказать, что опоры, в которые вложен художественный замысел, как, например, опоры-фигуры в Сочи, обычно устанавливаются не по инициативе сетевых компаний, а по заказу каких-то сторонних коммерческих или государственных организаций. Например, в США популярна опора в виде буквы M, стилизованной под логотип сети фастфуда «Макдоналдс».