Известно, что важнейшей характеристикой пресной воды является ее жесткость. Под жесткостью понимают количество миллиграмм-эквивалентов ионов кальция или магния в 1 л воды. 1 мг÷экв/л жесткости соответствует содержанию 20,04 мг Са 2+ или 12,16 мг Mg 2+ . По степени жесткости питьевую воду делят на очень мягкую (0-1,5 мг÷экв/л), мягкую (1,5-3 мг÷экв/л), средней жесткости (3-6 мг÷экв/л), жесткую (6-9 мг÷экв/л) и очень жесткую (более 9 мг÷экв/л). Наилучшие вкусовые свойства имеет вода с жесткостью 1,6-3,0 мг÷экв/л, а, согласно СанПиН 2.1.4.1116-02, физиологически полноценная вода должна содержать солей жесткости на уровне 1,5-7 мг÷экв/л. Однако при жесткости воды выше 4,5 мг÷экв/л происходит интенсивное накопление осадка в системе водоснабжения и на сантехнике, нарушается работа бытовых приборов. Обычно умягчение проводят до остаточной жесткости 1,0-1,5 мг÷экв/л, что соответствует зарубежным нормативам по эксплуатации бытовой техники. Вода, имеющая жесткость ниже 0,5 мг÷экв/л является коррозионно-активной по отношению к трубам и котлам, способна вымывать отложения в трубах, накапливающиеся при долгом застаивании воды в системе водоснабжения. Это влечет за собой появление неприятных запаха и вкуса воды.
Умягчение воды осуществляют методами:
- термическим, основанным на нагревании воды, ее дистилляции или вымораживании;
- реагентными, при которых находящиеся в воде ионы Са (II) и Mg (II) связывают различными реагентами в практически нерастворимые соединения;
- ионного обмена, основанного на фильтровании умягчаемой воды через специальные материалы, обменивающие входящие в их состав ионы Na (I) или Н (I) на ионы Са (II) и Mg (II), содержащиеся в воде;
- диализа; комбинированным, представляющим собой различные сочетания перечисленных методов.
Выбор метода умягчения определяется качеством воды, необходимой глубиной умягчения и технико-экономическими соображениями.
Умягчение воды катионированием основано на явлении ионного обмена, сущность которого состоит в способности ионообменных материалов или ионитов поглощать из воды положительные ионы в обмен на эквивалентное количество ионов катионита. Каждый катионит обладает определенной обменной емкостью, выражающейся количеством катионов, которые катионит может обменять в течение фильтроцикла. Обменную емкость катионита измеряют в грамм-эквивалентах задержанных катионов на 1 м 3 катионита, находящегося в набухшем (рабочем) состоянии после пребывания в воде, т.е. в таком состоянии, в котором катионит находится в фильтрате. Различают полную и рабочую обменную емкость катионита. Полной обменной емкостью называют то количество катионов кальция и магния, которое может задержать 1 м 3 катионита, находящегося в рабочем состоянии, до того момента, когда жесткость фильтрата сравнивается с жесткостью исходной воды. Рабочей обменной емкостью катионита называют то количество катионов Са +2 и Мg +2 , которое задерживает 1 м 3 катионита до момента «проскока» в фильтрат катионов солей жесткости. Обменную емкость, отнесенную ко всему объему катионита, загруженного в фильтр, называют емкостью поглощения.
При пропуске воды сверху вниз через слой катионита происходит ее умягчение, заканчивающееся на некоторой глубине. Слой катионита, умягчающий воду, называют работающим слоем или зоной умягчения. При дальнейшем фильтровании воды верхние слои катионита истощаются и теряют обменную способность. В ионный обмен вступают нижние слои катионита и зона умягчения постепенно опускается. Через некоторое время наблюдаются три зоны: работающего, истощенного и свежего катионита. Жесткость фильтрата будет постоянной до момента совмещения нижней границы зоны умягчения с нижним слоем катионита. В момент совмещения начинается «проскок» катионов Са +2 и Мg +2 и увеличение остаточной жесткости, пока она не станет равной жесткости исходной воды, что свидетельствует о полном истощении катионита. Рабочую обменную емкость фильтра Ер г÷экв/ м 3 , можно выразить так: Ер = QЖи; Ер = ер Vк.
Объем загруженного в фильтр катионита в набухшем состоянии Vк = аhк.
Формула для определения рабочей обменной емкости катионита, г÷экв/ м 3: ер = QЖи /аhк; где Жи — жесткость исходной воды, г÷экв/ м 3 ; Q — количество умягченной воды, м 3 ; а — площадь катионитового фильтра, м 2 ; hк — высота слоя катионита, м.
Обозначив скорость фильтрования воды в катионитовом фильтре vк, количество умягченной воды можно найти по формуле: Q = vк aTk = ераhк /Жи; откуда длительность работы катионитового фильтра (межрегенерационный период) находим по формуле: Tk = ерhк /vк Жи.
По исчерпании рабочей обменной способности катионита его подвергают регенерации, т.е. восстановлению обменной емкости истощенного ионообменника путем пропуска раствора поваренной соли.
В технологии умягчения воды широко применяют ионообменные смолы, которые представляют собой специально синтезированные полимерные нерастворимые в воде вещества, содержащие в своей структуре ионогенные группы кислотного характера NaSO 3 - (сильнокислотные катиониты). Ионообменные смолы подразделяют на гетеропористые, макропористые и изопористые. Гетеропористые смолы на дивинилбензоловой основе характеризуются гетерогенным характером гелевидной структуры и небольшими размерами пор. Макропористые имеют губчатую структуру и поры свыше молекулярного размера. Изопористые имеют однородную структуру и полностью состоят из смолы, поэтому их обменная способность выше, чем у предыдущих смол.
Качество катионитов характеризуется их физическими свойствами, химической и термической стойкостью, рабочей обменной емкостью и др. Физические свойства катионитов зависят от их фракционного состава, механической прочности и насыпной плотности (набухаемости). Фракционный (или зерновой) состав характеризует эксплуатационные свойства катионитов. Он определяется ситовым анализом. При этом учитываются средний размер зерен, степень однородности и количество пылевидных частиц, непригодных к использованию.
Мелкозернистый катионит, обладая более развитой поверхностью, имеет несколько большую обменную емкость, чем крупно-зернистый. Однако с уменьшением зерен катионита гидравлическое сопротивление и расход электроэнергии на фильтрование воды увеличиваются. Оптимальные размеры зерен катионита, исходя из этих соображений, принимают в пределах 0,3...1,5 мм. Рекомендуется применять катиониты с коэффициентом неоднородности Кн = 2.
Приведем характеристики некоторых катионоообменников. Среди сильнокислотных катионообменников отечественного производства, разрешенных к применению для хозяйственно-питьевого водоснабжения, можно выделить КУ-2-8чС. Получают его сульфированием гранульного сополимера стирола с 8% дивинилбензола. КУ-2-8чС по структуре и свойствам близок к следующим зарубежным сульфокатионитам особой степени чистоты: амберлайту IRN-77 (США), зеролиту 325 NG (Англия), дауэксу HCR-S-Н (США), дуолайту ARC-351 (Франция), вофатиту RH (Германия). По внешнему виду — сферические зерна от желтого до коричневого цвета, размером 0,4-1,25 мм, удельный объем не более 2,7 см 3 /г. Полная статическая обменная емкость не менее 1,8 г÷экв/л, мин, динамическая обменная емкость с полной регенерацией не менее 1,6 г÷экв/л.
В настоящее время нашли широкое применение сильнокислотные катиониты фирмы Пьюролайт: C100, С100Е, С120Е (аналоги отечественных смол КУ-2-8, КУ-2-8чС). Применяется ионообменная смола фирмы Пьюролайт С100Е Аg (обменная емкость 1,9 г÷экв/л, насыпная масса 800-840 г/л), представляющая собой серебросодержащий катионит для водоумягчения, обладающий бактерицидным действием. Существует отечественный аналог КУ-23С — макропористый катионит бактерицидного действия (статическая обменная емкость 1,25 г÷экв/л, насыпная масса 830-930 г/л).
Применяется для умягчения питьевой воды как в промышленности, так и в быту катионит Пьюрофайн С100ЕF — он имеет ряд преимуществ по сравнению с общепринятыми смолами для водоумягчения. Обладает намного большей рабочей емкостью при обычных скоростях потока, повышенной рабочей емкостью при высоких скоростях потока, при меняющемся и прерывающемся потоке. Минимальная общая обменная емкость 2,0 г÷экв/л. Особенность катионита С100ЕF состоит в том, что он требует меньшего объема и количества регенеранта (NaCl).
Применяется сильнокислотный катионит IONAС/С 249 для умягчения воды бытового и муниципального применения. Обменная емкость 1,9 г÷экв/л.
Умягчение воды натрий-катионитовым методом на указанных смолах: жесткость воды снижается при одноступенчатом натрий-катионировании до 0,05...0,1, при двухступенчатом — до 0,01 мг÷экв/л.
После истощения рабочей обменной емкости катионита он теряет способность умягчать воду и его необходимо регенерировать. Процесс умягчения воды на катионитовых фильтрах слагается из следующих последовательных операций: фильтрование воды через слой катионита до момента достижения предельно допускаемой жесткости в фильтрате (скорость фильтрования в пределах 10...25 м/ч); взрыхление слоя катионита восходящим потоком умягченной воды, отработанного регенерата или отмывных вод (интенсивность потока 3...4 л/(см 2); спуска водяной подушки во избежание разбавления регенерирующего раствора; регенерации катионита посредством фильтрования соответствующего раствора (скорость фильтрования 8...10 м/ч). На регенерацию обычно затрачивают около 2ч, из них на взрыхление — 10...15, на фильтрование регенерирующего раствора — 25...40, на отмывку — 30...60 мин.
Процесс регенерации на практике ограничиваются однократным пропуском соли при жесткости умягченной воды до 0,20 мг÷экв/л или двукратным — при жесткости ниже 0,05 мг÷экв/л.
Проблема жесткой воды знакома как городским жителям, так и тем, кто проживает за городом и пользуется водой из скважины или колодца.
Практически вся вода из водопровода имеет в своем составе соли магния и кальция. Именно они отвечает за такой показатель, как жесткость. Чем выше их концентрация, тем жестче жидкость.
Переизбыток солей не только вреден для организма, но и опасен для сантехники, бытовых приборов, труб. Зарастание солями поверхностей изнутри снижает теплоотдачу, приводит к быстрой поломке техники.
По степени жесткости воду делят на:
- мягкую,
- среднюю,
- жесткую,
- сверхжесткую.
Мягкую можно получить только из скважины большой глубины, средняя бежит из наших кранов, а последние две встречаются практически повсеместно и доставляют немало хлопот.
Жесткая вода:
- приводит к отложению камней в суставах и почках,
- вынуждает использовать больше порошка и моющих средств,
- приводит к поломкам различных элементов оборудования, запорной арматуры.
Справиться с проблемой помогут фильтры умягчители . Они заменяют ионы магния и кальция на безопасные ионы натрия.
Современные системы умягчения воды помогут решить проблему эффективно и быстро.
Существует несколько способов сделать воду мягче. Самый простой — кипячение, но полностью избавиться от солей это не поможет.
Раньше в воду добавляли кальцинированную соду или известь, сегодня применяют ортофосфат натрия. Но данный способ требует наличия большого резервуара, постоянного пополнения реагента, утилизацию отходов, а для использования в домашних условиях это совсем неудобно.
Гораздо практичнее и эффективнее ионообменные фильтры, которые могут снизить концентрацию солей до 0,01 мг/л.
Еще один популярный вид фильтров — электромагнитный. В основе его действия – это электромагнитные волны, которые заставляют кристаллы соли изменить свою форму, и жидкость становится мягче.
Качественный фильтр умягчения воды для дачи должен отвечать следующим требованиям:
- иметь возможность технологической промывки, чтобы не допускать быстрого засорения ячеек фильтра (обычно данному требованию соответствуют магистральные фильтры грубой очистки),
- не содержать полифосфаты и другие реагенты (специалисты не рекомендуют использовать реагентные методы для получения питьевой воды),
- работать бесперебойно без контроля с вашей стороны,
- иметь экономный расход электроэнергии.
Последним двум требованиям соответствуют электромагнитные фильтры, уверенно набирающие популярность в России.
Но прежде чем принять решение об установке того или иного оборудования, рекомендуется провести анализ жидкости и обратиться к специалистам, которые подберут оптимальный фильтр умягчения для коттеджа исходя из ваших потребностей и особенностей дома и источника.
Умягчение воды — процесс, направленный на удаление из нее катионов кальция и магния, т.е. снижение ее жесткости .
По требованию САНПиН жесткость питьевой воды не должна превышать 7 мг-экв/л, а к воде, участвующей в процессах теплообмена выставляют требования глубокого ее умягчения, т.е. до 0,05…0,01 мг-экв/л. Жесткость воды, используемой для подпитки барабанных котлов ТЭЦ, не должна превышать 0,005 мг-экв/л, или 5 мкг-экв/л.
Снижение совокупной концентрации катионов Mg(II), Ca(II) и анионов, с которыми они при определенных условиях могут образовывать не стенках труб и аппаратов плотные нерастворимые отложения, проходит на системах водоочистки и водоподготовки различными методами, чей выбор определяется качеством исходной воды, требованию к ее очистке и технико-экономическими соображениями.
Метод ионного обмена.
В основе данного метода лежит способность некоторых материалов (катионитов и анионитов) поглощать из воды ионы (катионы и анионы) в обмен на эквивалентное количество ионов (катионов и анионов).
Процесс катионирования — тот процесс, при котором происходит обмен катионами. В водоподготовке при умягчении — катионами катионита на ионы Ca 2+ и Mg 2+ из воды.
Процесс анионирования — соответственно анионами, в основном при обессоливании и глубоком обессоливании.
Магнитная обработка воды.
Использование магнитной обработки воды целесообразно в случае высокой кальциево-карбонатной жесткости.
В процессе прохождения воды сквозь магнитное поле в ней образуются центры кристаллизации, которые укрупняются и выпадают в неприкипающий шлам, удаляемый при продувке. Т.е. выделение осадка идет не на стенках поверхности нагрева, а в объеме воды.
Влияние на противонакипный эффект оказывают такие факторы, как качественный и количественный состав воды, скорость движения жидкости сквозь магнитные силовые линии, напряженность магнитного поля и время пребывания в нем воды.
Условиями для осуществления успешной магнитной обработки воды должно являться высокое содержание карбоната и сульфата кальция, а концентрация свободного оксида углерода IV должна быть меньше равновесной. Так же увеличивают противонакипный эффект содержащиеся в воде примеси оксидов железа и прочих.
Аппараты магнитной обработки воды работают как на основе постоянных магнитов, так и на основе электромагнитов. Недостатком аппаратов с постоянными магнитами является то, что время от времени их приходится чистить от ферромагнитных примесей. Электромагниты чистят от оксидов железа, отключив их от сети.
Скорость воды в магнитном поле при ее обработке не должна превышать 1м/с. Для увеличения объема обрабатываемой воды на единицу времени применяют аппараты с послойной магнитной обработкой.
Метод магнитной обработки нашел применение на тепловых сетях горячего водоснабжения, на ТЭЦ, в теплообменных аппаратах.
Выбор данного метода при решении задачи умягчения воды должен главным образом основываться на его эффективности при очистке воды данного качества – использоваться как основной, последующей ступени или в качестве дополнительного.
Обратный осмос.
В данное время наиболее широкое распространение в водоподготовке получил метод обратного осмоса.
Суть метода состоит в том, что под высоким давлением, — от 10 до 25 атмосфер, — вода подается на мембраны. Мембраны, являясь селективным материалом по отношению к проходящим сквозь нее примесям, пропускают молекулы воды и не пропускают растворенные в воде ионы.
Таким образом, на выходе после установки обратного осмоса мы получаем два потока — первый поток чистой воды, прошедшей сквозь мембрану, так называемый пермеат, и второй поток — воды с примесями, не прошедшей сквозь мембрану, называемый концентратом.
Пермеат направляется потребителю и составляет от 50 до 80 % от объема подаваемой воды. Его количество зависит от свойств мембраны и ее состояния, качества исходной воды и желаемого результата очистки. Чаще всего это около 70%.
Концентрат, соответственно, от 50 до 20%.
При увеличении нагрузки на мембрану, т.е. увеличения процентного соотношения между пропускаемой водой и водой с примесями, селективность мембраны снижается и достигает минимума при отсутствии концентрата, т.е. тогда, когда вся вода, подающаяся на установку обратного осмоса, проходит сквозь мембрану.
Мембраны обратного осмоса изготовляются из композитного полимерного материала особой структуры, позволяющего при высоких давлениях пропускать воду и не пропускать растворенные в ней ионы и прочие примеси. При увеличении нагрузки на мембрану срок ее службы сокращается, а при достижении критических параметров, при которых попускаемая жидкость с примесями проходит сквозь мембрану полностью, она разрушается. Средний срок службы мембраны — 5 лет.
Поверхность мембран со временем может обрастать микроорганизмами, покрываться слоем труднорастворимых соединений. Для чистки обратноосмотических мембран применяют растворы кислот и щелочей с добавлением биоцидов.
При промывки обратного осмоса нельзя забывать, что полупроницаемая мембрана — это не фильтр. Промывка должна проводиться исключительно по ходу движения жидкости. Обратный ток раствора воды приведет к выходу мембраны из строя.
Реагентные методы обработки воды.
Реагентные методы обработки воды служат в основном для неглубокого умягчения воды путем добавления реагентов и перевода солей жесткости в малорастворимые соединения с последующим их осаждением.
В качестве реагентов используется известь, сода, едкий натр и пр. В настоящий момент мало где применяются, но для общего понимания процессов перевода в малорастворимые соединения кальция и магния и дальнейшее их осаждение, рассмотрим их.
Снижение накипи известкованием.
Метод применим к воде с высокой карбонатной и малой некарбонатной жесткостью.
При добавлении известкового молока pH воды повышается, что приводит к переходу растворенного диоксида углерода и гидрокарбонатного иона в карбонатный ион:
СО 2 + ОН - = СО 3 2- + Н 2 О,
НСО 3- + ОН - = СО 3 2- + Н 2 О.
При насыщении воды карбонатными ионами кальций выпадает в осадок:
Са 2+ + СО 3 2- = СаСО 3 ↓.
Также с увеличением рН в осадок выпадает и магний:
Мg 2+ + OH - = Mg(OH) 2 ↓.
В случае, если превышение карбонатной жесткости незначительно, то вместе с известью дозируют соду, чье присутствие снижает некарбонатную жесткость:
CaSO 4 + Na 2 CO 3 = CaCO 3 ↓ + Na 2 SO 4 .
Для более полного осаждения катионов магния и кальция рекомендуется подогревать воду до температуры 30 - 40 градусов. С ее повышением растворимость CaCO 3 и Mg(OH) 2 падает. Это дает возможность снижать жесткость воды 1 мг-экв/л и менее.
Содово-натриевый метод умягчения воды.
Добавление соды необходимо в том случае, если некарбонатная жесткость больше чем карбонатная. При равенстве этих параметров добавление соды может и не понадобиться совсем.
Гидрокарбонаты кальция и магния в реакции со щелочью образуют малорастворимые соединения кальция и магния, соду, воду и углекислый газ:
Ca(HCO 3) 2 + 2NaOH = CaCO 3 ↓ + Na 2 CO 3 + 2H 2 O,
Mg(HCO 3) 2 + 2NaOH = Mg(OH) 2 ↓ + Na 2 CO 3 + H 2 O + CO 2 .
Образовавшийся в результате реакции гидрокарбоната магния с щелочью углекислый газ снова реагирует с щелочью с образованием соды и воды:
CO 2 + NaOH = Na 2 CO 3 + H 2 O.
Некарбонатная жесткость.
Сульфат и хлорид кальция реагирует с образовавшейся в реакциях карбонатной жесткости и щелочи содой и добавленной содой с образованием неприкипающего в щелочных условиях карбоната кальция:
CaCl 2 + Na 2 CO 3 = CaCO 3 ↓ + 2NaCl,
CaSO 4 + Na 2 CO 3 = CaCO 3 ↓ + Na 2 SO 4
Сульфат и хлорид магния реагируют со щелочью, образуя выпадающий в осадок гидроксид магния:
MgSO 4 + 2NaOH = Mg(OH) 2 ↓ + Na 2 SO 4 ,
MgCl 2 + 2NaOH = Mg(OH) 2 ↓ + 2NaCl .
Ввиду того, что в реакциях гидрокарбоната с щелочью образуется сода, которая в дальнейшем реагирует с некарбонатной жесткостью, ее количество необходимо коррелировать в соотношении карбонатной и некарбонатной жесткости: при их равенстве соду можно не добавлять, при условии Ж к > Ж нк образуется избыток соды, при обратном соотношении Ж к
Комбинированные методы.
Сочетание различных методов обработки воды с целью снижения ее жесткости дает в иной раз довольно высокую результативность. Обусловлено это, как правило, высокими требованиями к качеству воды и пара.
Примером может быть сочетание обратного осмоса с натрий-катионированием . Основная жесткость воды снижается на фильтрах-катионитах, на обратном осмосе идет ее обессоливание.
В другом случаем в качестве дополнительной ступени очистки может служить магнитная обработка воды – установку располагают после системы умягчения на трубопроводе циркуляции горячего водоснабжения.
Многие слышали об умягчении жесткой воды и стараются обязательно заказать себе для водоподготовки умягчитель.Так ли это важно и нужно?
Физиологическая норма жесткости указана в СанПиНе 2.1.4.1116-02 на бутылированную воду и составляет от 1,5 до 3,5 ммоль/л. Для бытовой техники требуется еще более мягкая воды, чтобы не образовывалась накипь.
Различают два вида жёсткости:
Карбонатная (временная)
- называют потому, что она устраняется кипячением.
Некарбонатную (постоянную)
- называют потому, что при кипячении жёсткость не устраняется, но при выпаривании на стенках сосуда образуется в виде накипи светло-белый малорастворимый осадок типа сульфата кальция или магния.Соли MgCl2, CaCl2, MgSO4, содержащиеся в воде с постоянной жёсткостью, вызывают коррозию стальных конструкций и ускоряют износ водонагревательного и отопительного оборудования.При использовании для водона-гревательного оборудования и отопительной техники жёсткой воды образуется накипь из карбонатов кальция и магния, гипса и других солей.Образование накипи затрудняет нагревание воды, вызывает увеличение расхода электричества и топлива.
В жёсткой воде плохо развариваются мясо, овощи, крупа, плохо заваривается чай. При стирке тканей (как и при мытье головы) образующиеся нерастворимые соединения осаждаются на поверхности нитей и постепенно разрушают волокна.
Умягчение воды - процесс удаления из неё катионов жёсткости, т.е. кальция и магния.
Термический метод основан на нагревании воды до температуры выше точки кипения, её дистилляцией или вымораживанием с целью устранения карбоната кальция и карбоната магния. Вследствие применения указанного метода остаточная жёсткость воды составляет не более 0,7 ммоль/л. Поэтому термический метод применяется для технических нужд, в частности при использовании вод,идущих на питание котлов низкого давления, а также в сочетании с реагентными методами.
При умягчении воды реагентными методами используют реагенты, образующие при взаимодействии с кальцием и магнием малорастворимые соединения с последующим их отделением в осветителях, тонкослойных отстойниках и осветительных фильтрах. В качестве реагентов-осадителей используют известь, кальцинированную соду, гидрооксиды натрия и бария и другие вещества. Выбор реагентов зависит от качества исходной воды и условий её дальнейшего применения. При применении реагентных методов остаточная жёсткость воды составит до 0,7 мг/л. В соответствии с рекомендациями «Строительных норм и правил» (СН и П) реагентные методы в основном используются для умягчения поверхностных вод, когда одновременно требуется и осветление воды.
Умягчение воды основанное на разных скоростях диффузии этих веществ через полупроницаемую мембрану , разделяющую концентрированный и разбавленный растворы. Умягчение воды методом диализа осуществляется в мембранных аппаратах с нитро- и ацетатцеллюлозными плёночными мембранами. В результате применения данного метода остаточная жёсткость воды составит до 0,01 мг/л и ниже. Отрицательной стороной метода диализа является высокая себестоимость мембранных аппаратов.
Магнитная обработка воды - распространена для борьбы с образованием накипи. Сущность метода состоит в том, что при пересечение водой магнитных силовых линий образователи накипи выделяются не на поверхности нагрева, а в массе воды. Образующиеся рыхлые осадки (шлам) удаляют при продувке.
Наибольшее практическое применение получил ионообменный метод умягчения воды. Сущность ионообменного метода заключается в способности ионообменных материалов (ионитов) поглощать из воды положительные или отрица-тельные ионы в обмен на эквивалентное количество ионов ионита. В зависимости от состава существуют минеральные и органические катиониты, которые, в свою очередь, разделяются на вещества естественного и искусственного происхождения. В технологии подготовки воды широко применяют органические катиониты искусственного происхождения, так называемые ионообменные смолы. Качество ионообменных смол характеризуется их физическими свойствами, химической и термической стойкостью, рабочей ёмкостью и др.В установках умягчения воды использует ионообменные смолы, основанные на применении катионита в Na-форме и анионита в Cl-форме, т.е. использует метод натрий - хлор-ионирования. Указанный метод состоит из следующих стадий: натрий-катионирования и хлор-катионирования. На стадии натрий-катионирования происходит замещение ионов кальция и магния, придающих воде жёсткость, на ионы натрия.
В результате обрабатываемая вода умягчается, а кальций и магний образуют нерастворимый полимер. При пропуске натрий-катионированной воды через хлор-аноион протекают реакции обмена анионов, содержащихся в Na- катионированной воде, на ионы хлора и щёлочность обрабатываемой воды снижается. Для восстановления свойств ионообменной смолы (регенерации) используется раствор поваренной соли. Таким образом, достигается глубокое умягчение воды (до 0,03 … 0,05 ммоль/л). При применении метода натрий - хлор-ионирования расходуется только один реагент - поваренная соль, не требуется антикоррозийной защиты оборудования, трубопроводов и специальной арматуры, уменьшается количество оборудования, упрощается контроль работы и эксплуатации водоумягчительной установки. В результате повышается надёжность и уменьшается стоимость установки для умягчения воды. Только пить постоянно такую умягченную
Технологические схемы и конструктивные элементы установок реагентного умягчения воды
Термохимический метод умягчения воды
Умягчение воды диализом
Магнитная обработка воды
Литература
Теоретические основы умягчения воды, классификация методов
Под умягчением воды подразумевается процесс удаления из нее катионов жесткости, т.е. кальция и магния. В соответствии с ГОСТ 2874-82 "Вода питьевая" жесткость воды не должна превышать 7 мг-экв/л. Отдельные виды производств к технологической воде предъявляют требования глубокого ее умягчения, т.е. до 0,05.0,01 мг-экв/л. Обычно используемые водоисточники имеют жесткость, отвечающую нормам хозяйственно-питьевых вод, и в умягчении не нуждаются. Умягчение воды производят в основном при ее подготовке для технических целей. Так, жесткость воды для питания барабанных котлов не должна превышать 0,005 мг-экв/л. Умягчение воды осуществляют методами: термическим, основанным на нагревании воды, ее дистилляции или вымораживании; реагентными, при которых находящиеся в воде ионы Ca ( II ) и Mg ( II ) связывают различными реагентами в практически нерастворимые соединения; ионного обмена, основанного на фильтровании умягчаемой воды через специальные материалы, обменивающие входящие в их состав ионы Na ( I) или Н (1) на ионы Са (II) и Mg ( II ), содержащиеся в воде диализа; комбинированным, представляющим собой различные сочетания перечисленных методов.
Выбор метода умягчения воды определяется ее качеством, необходимой глубиной умягчения и технико-экономическими соображениями. В соответствии с рекомендациями СНиПа при умягчении подземных вод следует применять ионообменные методы; при умягчении поверхностных вод, когда одновременно требуется и осветление воды, - известковый или известково-содовый метод, а при глубоком умягчении воды - последующее катионирование. Основные характеристики и условия применения методов умягчения воды приведены в табл. 20.1.
умягчение вода диализ термический
Для получения воды для хозяйственно-питьевых нужд обычно умягчают лишь ее некоторую часть с последующим смешением с исходной водой, при этом количество умягчаемой воды Q y определяют по формуле
(20.1)где Ж о. и. - общая жесткость исходной воды, мг-экв/л; Ж 0. с. - общая жесткость воды, поступающей в сеть, мг-экв/л; Ж 0. у. - жесткость умягченной воды, мг-экв/л.
Методы умягчення воды
Показатель | термический | реагентный | ионообменный | диализа |
Характеристика процесса | Воду нагревают до температуры выше 100°С, при этом удаляется карбонатная и некарбонатная жесткости (в виде карбоната кальция, гидрокси-. да магния и гипса) | В воду добавляют известь, устраняющую карбонатную и магниевую жесткость, а также соду, устраняющую некарбонат - иую жесткость | Умягчаемая вода пропускается через катионито - вые фильтры | Исходная вода фильтруется через полупроницаемую мембрану |
Назначение метода | Устранение карбонатной жесткости из воды, употребляемой для питания котлов низкого н среднего давления | Неглубокое умягчение при одновременном осветлении воды от взвешенных веществ | Глубокое умягчение воды, содержащей незначительное количество взвешенных веществ | Глубокое умягчение воды |
Расход воды на собственные нужды | - | Не более 10% | До 30% и более пропорционально жесткости исходной воды | 10 |
Условия эффективного применения: мутность исходной воды, мг/л | До 50 | До 500 | Не более 8 | До 2,0 |
Жесткость воды, мг-экв/л | Карбонатная жесткость с преобладанием Са (НС03) 2, некарбонатная жесткость в виде гипса | 5.30 | Не выше 15 | До 10,0 |
Остаточная жесткость воды, мг-экв/л | Карбонатная жесткость до 0,035, CaS04 до 0,70 | До 0,70 | 0,03.0,05 прн одноступенчатом и до 0,01 при двухступенчатом ка - тионировании | 0,01 и ниже |
Температура воды,°С | До 270 | До 90 | До 30 (глауконит), до 60 (сульфоугли) | До 60 |
Термический метод умягчения воды
Термический метод умягчения воды целесообразно применять при использовании карбонатных вод, идущих на питание котлов низкого давления, а также в сочетании с реагентными методами умягчения воды. Он основан на смещении углекислотного равновесия при ее нагревании в сторону образования карбоната кальция, что описывается реакцией
Са (НС0 3) 2 - > СаСО 3 + С0 2 + Н 2 0.
Равновесие смещается за счет понижения растворимости оксида углерода (IV), вызываемого повышением температуры и давления. Кипячением можно полностью удалить оксид углерода (IV) и тем самым значительно снизить карбонатную кальциевую жесткость. Однако, полностью устранить указанную жесткость не удается, поскольку карбонат кальция хотя и незначительно (13 мг/л при температуре 18°С), но все же растворим в воде.
При наличии в воде гидрокарбоната магния процесс его осаждения происходит следующим образом: вначале образуется сравнительно хорошо растворимый (110 мг/л при температуре 18° С) карбонат магния
Mg (НСО 3) → MgC0 3 + С0 2 + Н 2 0,
который при продолжительном кипячении гидролизуется, в результате чего выпадает осадок малорастворимого (8,4 мг/л). гидроксида магния
MgC0 3 +H 2 0 → Mg (0H) 2 +C0 2 .
Следовательно, при кипячении воды жесткость, обусловливаемая гидрокарбонатами кальция и магния, снижается. При кипячении воды снижается также жесткость, определяемая сульфатом кальция, растворимость которого падает до 0,65 г/л.
На рис. 1 показан термоумягчитель конструкции Копьева, отличающийся относительной простотой устройства и надежностью работы. Предварительно подогретая в аппарате обрабатываемая вода поступает через эжектор на розетку пленочного подогревателя и разбрызгивается над вертикально размещенными трубами, и по ним стекает вниз навстречу горячему пару. Затем совместно с продувочной водой от котлов она по центрально подающей трубе через дырчатое днище поступает в осветлитель со взвешенным осадком.
Выделяющиеся при этом из воды углекислота и кислород вместе с избытком пара сбрасываются в атмосферу. Образующиеся в процессе нагревания воды соли кальция и магния задерживаются во взвешенном слое. Пройдя через взвешенный слой, умягченная вода поступает в сборник и отводится за пределы аппарата.
Время пребывания воды в термоумягчителе составляет 30.45 мин, скорость ее восходящего движения во взвешенном слое 7.10 м/ч, а в отверстиях ложного дна 0,1.0,25 м/с.

Рис. 1. Термоумягчитель конструкции Копьева.
15 - сброс дренажной воды; 12 - центральная подающая труба; 13 - ложные перфорированные днища; 11 - взвешенный слой; 14 - сброс шлама; 9 - сборник умягченной воды; 1, 10 - подача исходной и отвод умягченной воды; 2 - продувка котлов; 3 - эжектор; 4 - выпар; 5 - пленочный подогреватель; 6 - сброс пара; 7 - кольцевой перфорированный трубопровод отвода воды к эжектору; 8 - наклонные сепарирующие перегородки
Реагентные методы умягчения воды
Умягчение воды реагентными методами основано на обработке ее реагентами, образующими с кальцием и магнием малорастворимые соединения: Mg (OH) 2 , СаС0 3 , Са 3 (Р0 4) 2 , Mg 3 (P0 4) 2 и другие с последующим их отделением в осветлителях, тонкослойных отстойниках и осветлительных фильтрах. В качестве реагентов используют известь, кальцинированную соду, гидроксиды натрия и бария и другие вещества.
Умягчение воды известкованием применяют при ее высокой карбонатной и низкой некарботаной жесткости, а также в случае, когда не требуется удалять из воды соли некарбонатной жесткости. В качестве реагента используют известь, которую вводят в виде раствора или суспензии (молока) в предварительно подогретую обрабатываемую воду. Растворяясь, известь обогащает воду ионами ОН - и Са 2+ , что приводит к связыванию растворенного в воде свободного оксида углерода (IV) с образованием карбонатных ионов и переходу гидрокарбонатных ионов в карбонатные:
С0 2 + 20Н - → СО 3 + Н 2 0,НСО 3 - + ОН - → СО 3 - + Н 2 О.
Повышение в обрабатываемой воде концентрации ионов С0 3 2 - и присутствие в ней ионов Са 2+ с учетом введенных с известью приводит к повышению произведения растворимости и осаждению малорастворимого карбоната кальция:
Са 2+ + С0 3 - → СаС0 3 .
При избытке извести в осадок выпадает и гидроксид магния
Mg 2+ + 20Н - → Mg (ОН) 2
Для ускорения удаления дисперсных и коллоидных примесей и снижения щелочности воды одновременно с известкованием применяют коагуляцию этих примесей сульфатом железа (II) т.е. FeS0 4 *7 Н 2 0. Остаточная жесткость умягченной воды при декарбонизации может быть получена на 0,4.0,8 мг-экв/л больше некарбонатной жесткости, а щелочность 0,8.1,2 мг-экв/л. Доза извести определяется соотношением концентрации в воде ионов кальция и карбонатной жесткости: а) при соотношении [Са 2+ ] /20<Ж к,
(20.2б)б) при соотношении [Са 2+ ] /20 > Ж к,
(20.3)где [СО 2 ] - концентрация в воде свободного оксида углерода (IV), мг/л; [Са 2+ ] - концентрация ионов кальция, мг/л; Ж к - карбонатная жесткость воды, мг-экв/л; Д к - доза коагулянта (FeS0 4 или FeCl 3 в пересчете на безводные продукты), мг/л; е к - эквивалентная масса активного вещества коагулянта, мг/мг-экв (для FeS0 4 е к = 76, для FeCl 3 е к = 54); 0,5 и 0,3 - избыток извести для обеспечения большей полноты реакции, мг-экв/л.