Уравнение химической реакции водород с кислородом. Соединения кислорода с водородом

Самый распространенный элемент во вселенной - это водород. В веществе звезд он имеет вид ядер - протонов - и является материалом для термоядерных процессов. Почти половина массы Солнца также состоит из молекул H 2 . Содержание его в земной коре достигает 0,15 % , а атомы присутствуют в составе нефти, природного газа, воды. Вместе с кислородом, азотом и углеродом он является органогенным элементом, входящим в состав всех живых организмов на Земле. В нашей статье мы изучим физические и химические свойства водорода, определим основные области его применения в промышленности и значение в природе.

Положение в периодической системе химических элементов Менделеева

Первый элемент, открывающий периодическую систему - это водород. Его атомная масса составляет 1,0079. Имеет два стабильных (протий и дейтерий) и один радиоактивный изотоп (тритий). Физические свойства определяются местом неметалла в таблице химических элементов. В обычных условиях водород (формула его - H 2) представляет газ, который почти в 15 раз легче воздуха. Строение атома элемента уникально: он состоит только из ядра и одного электрона. Молекула вещества двухатомная, частицы в ней соединяются с помощью ковалентной неполярной связи. Ее энергоемкость достаточно велика - 431 кДж. Это объясняет невысокую химическую активность соединения в обычных условиях. Электронная формула водорода такова: H:H.

Вещество имеет еще целый ряд свойств, аналогов которым нет среди других неметаллов. Рассмотрим некоторые из них.

Растворимость и теплопроводность

Лучше всего проводят тепло металлы, но водород по теплопроводности приближается к ним. Объяснение феномена заключается в очень большой скорости теплового движения легких молекул вещества, поэтому в водородной атмосфере нагретый предмет остывает в 6 раз быстрее, чем на воздухе. Соединение может хорошо растворяться в металлах, например, почти 900 объемов водорода могут быть поглощены одним объемом палладия. Металлы могут вступать с H 2 в химические реакции, в которых проявляются окислительные свойства водорода. В этом случае образуются гидриды:

2Na + H 2 =2 NaH.

В этой реакции атомы элемента принимают электроны от частиц металла, превращаясь в анионы с единичным отрицательным зарядом. Простое вещество H 2 в данном случае является окислителем, что для него обычно не характерно.

Водород как восстановитель

Объединяет металлы и водород не только высокая теплопроводность, но и способность их атомов в химических процессах отдавать собственные электроны, то есть окисляться. Например, основные оксиды вступают в реакции с водородом. Окислительно-восстановительная реакция заканчивается выделением чистого металла и образованием молекул воды:

CuO + H 2 = Cu + H 2 O.

Взаимодействие вещества с кислородом при нагревании приводит также к получению молекул воды. Процесс является экзотермическим и сопровождается выделением большого количества тепловой энергии. Если газовая смесь H 2 и O 2 реагирует в соотношении 2:1, то ее называют так как при поджигании она взрывается:

2H 2 + O 2 = 2H 2 O.

Вода является и играет важнейшую роль в формировании гидросферы Земли, климата, погоды. Она обеспечивает круговорот элементов в природе, поддерживает все жизненные процессы организмов - обитателей нашей планеты.

Взаимодействие с неметаллами

Наиболее важные химические свойства водорода - это его реакции с неметаллическими элементами. При нормальных условиях достаточно химически инертны, поэтому вещество может реагировать только с галогенами, например с фтором или хлором, являющимися наиболее активными среди всех неметаллов. Так, смесь фтора и водорода взрывается в темноте или на холоде, а с хлором - при нагревании или на свету. Продуктами реакции будут галогеноводороды, водные растворы которых известны как фторидная и хлоридная кислоты. С взаимодействует при температуре 450-500 градусов, давлении 30-100 мПа и в присутствии катализатора:

N₂ + 3H₂ ⇔ p, t, kat ⇔ 2NH₃.

Рассмотренные химические свойства водорода имеют большое значение для промышленности. Например, можно получить ценный химический продукт - аммиак. Он является основным сырьем для получения нитратной кислоты и азотных удобрений: карбамида, нитрата аммония.

Органические вещества

Между углеродом и водородом приводит к получению простейшего углеводорода - метана:

C + 2H 2 = CH 4.

Вещество является важнейшей составной частью природного и Они применяются в качестве ценного вида топлива и сырья для промышленности органического синтеза.

В химии соединений углерода элемент входит в состав огромного количества веществ: алканов, алкенов, углеводов, спиртов и т. д. Известно много реакций органических соединений с молекулами H 2 . Они носят общее название - гидрирование или гидрогенизация. Так, альдегиды можно восстановить водородом до спиртов, непредельные углеводороды - до алканов. Например, этилен превращается в этан:

C 2 H 4 + H 2 = C 2 H 6 .

Важное практическое значение имеют такие химические свойства водорода, как, например, гидрогенизация жидких масел: подсолнечного, кукурузного, рапсового. Она приводит к получению твердого жира - саломаса, который используют в производстве глицерина, мыла, стеарина, твердых сортов маргарина. Для улучшения внешнего вида и вкусовых качеств пищевого продукта в него добавляют молоко, животные жиры, сахар, витамины.

В нашей статье мы изучили свойства водорода и выяснили его роль в природе и жизни человека.

Водород в таблице Менделеева располагается под номером один, в I и VII группах сразу. Символ водорода - H (лат. Hy­dro­ge­ni­um). Это очень легкий газ без цвета и запаха. Существует три изотопа водорода: 1H - протий, 2H - дейтерий и 3H - тритий (радиоактивен). Воздух или кислород в реакции с простым водородом H₂ легко воспламеняется, а также взрывоопасен. Водород не выделяет токсичных продуктов. Он растворим в этаноле и ряде металлов (особенно это касается побочной подгруппы).

Распространённость водорода на Земле

Как и кислород, водород имеет огромное значение. Но, в отличие от кислорода, водород почти весь находится в связанном виде с другими веществами. В свободном состоянии он находится лишь в атмосфере, но количество его там крайне ничтожно. Водород входит в состав почти всех органических соединений и живых организмов. Чаще всего он встречается в виде оксида - воды.

Физико-химические свойства

Водород не активен, а при нагревании или в присутствии катализаторов вступает в реакции практически со всеми простыми и сложными химическими элементами.

Реакция водорода с простыми химическими элементами

При повышенной температуре водород вступает в реакцию с кислородом, серой, хлором и азотом. вы узнаете, какие эксперименты с газами можно провести дома.

Опыт взаимодействия водорода с кислородом в лабораторных условиях


Возьмем чистый водород, который поступает по газоотводной трубке, и подожжем его. Он будет гореть еле заметным пламенем. Если же поместить водородную трубку в какой-либо сосуд, то он продолжит гореть, а на стенках образуются капельки воды. Это кислород вступил в реакцию с водородом:

2Н₂ + О₂ = 2Н₂О + Q

При горении водорода образуется много тепловой энергии. Температура соединения кислорода и водорода достигает 2000 °С. Кислород окислил водород, поэтому такая реакция называется реакцией окисления.

В обычных условиях (без подогрева) реакция протекает медленно. А при температуре выше 550 °С происходит взрыв (образуется так называемый гремучий газ). Раньше водород часто использовали в воздушных шарах, но из-за образования гремучего газа было много катастроф. У шара нарушалась целостность, и происходил взрыв: водород вступал в реакцию с кислородом. Поэтому сейчас используют гелий, который периодически подогревают пламенем.


Хлор взаимодействует с водородом и образует хлороводород (только в присутствии света и тепла). Химическая реакция водорода и хлора выглядит так:

Н₂ + Cl₂ = 2НСl

Интересный факт: реакция фтора с водородом вызывает взрыв даже при темноте и температуре ниже 0 °С.

Взаимодействие азота с водородом может происходить только при нагревании и в присутствии катализатора. При этой реакции образуется аммиак. Уравнение реакции:

ЗН₂ + N₂ = 2NН₃

Реакция серы и водорода происходит с образованием газа - сероводорода. В результате чувствуется запах тухлых яиц:

Н₂ + S = H₂S

В металлах водород не только растворяется, но и может вступать в реакцию с ними. В результате образуются соединения, которые называются гидридами. Некоторые гидриды используют как топливо в ракетах. Также с их помощью получают ядерную энергию.

Реакция со сложными химическими элементами

Например, водород с оксидом меди. Возьмем трубку с водородом и пропустим через порошок оксида меди. Вся реакция проходит при нагревании. Черный порошок меди станет коричнево-красным (цвет простой меди). Ещё появятся капельки жидкости на ненагретых участках колбы - это образовалась .

Химическая реакция:

CuO + H₂ = Cu + H₂O

Как видим, водород вступил в реакцию с оксидом и восстановил медь.

Восстановительные реакции

Если вещество в ходе реакции отнимает оксид, оно является восстановителем. На примере реакции оксида меди с видим, что водород был восстановителем. Также он реагирует и с некоторыми другими оксидами , такими как HgO, MoO₃ и PbO. В любой реакции, если один из элементов является окислителем, другой будет восстановителем.

Все соединения водорода

Водородные соединения с неметаллами - очень летучие и ядовитые газы (например, сероводород, силан, метан).

Галогеноводороды - больше всего применяют хлороводород. При растворении он образует соляную кислоту. Также в эту группу входят: фтороводород, йодоводород и бромоводород. Все эти соединения в результате образуют соответствующие кислоты.

Пероксид водорода (химическая формула Н₂О₂) проявляет сильнейшие окислительные свойства.

Гидроксиды водорода или вода Н₂О.

Гидриды - это соединения с металлами.

Гидроксиды - это кислоты, основания и другие соединения, в состав которых входит водород.

Органические соединения : белки, жиры, липиды, гормоны и другие.

Характеристика s-элементов

К блоку s-элементов относятся 13 элементов, общим для которых является застраивание в их атомах s-подуровня внешнего энергетического уровня.

Хотя водород и гелий относятся к s-элементам из-за специфики их свойств их следует рассматривать отдельно. Водород, натрий, калий, магний, кальций - жизненно необходимые элементы.

Соединения s-элементов проявляют общие закономерности в свойствах, что объясняется сходством электронного строения их атомов. Все внешние электроны являются валентными и принимают участие в образовании химических связей. Поэтому максимальная степень окисления этих элементов в соединениях равна числу электронов во внешнем слое и соответственно равна номеру группы, в которой и находится данный элемент. Степень окисления металлов s-элементов всегда положительна. Другая особенность заключается в том, что после отделения электронов внешнего слоя остается ион, имеющий оболочку благородного газа. При увеличении порядкового номера элемента, атомного радиуса, уменьшается энергии ионизации (от 5,39 эВ y Li до 3,83 эВ y Fr), а восстановительная активность элементов возрастает.

Подавляющее большинство соединений s-элементов бесцветно (в отличие от соединений d-элементов), так как исключен обуславливающий окраску переход d-электронов с низких энергетических уровней на более высокие энергетические уровни.

Соединения элементов групп IA - IIA - типичные соли, в водном растворе они практически полностью диссоциируют на ионы, не подверженны гидролизу по катиону (кроме солей Be 2+ и Mg 2+).

водород гидрид ионный ковалентный

Для ионов s-элементов комплексообразование не характерно. Кристаллические комплексы s - элементов с лигандами H 2 O-кристаллогидраты, известны с глубокой древности, например: Na 2 В 4 O 7 10H 2 O-бура, KАl (SO 4) 2 12H 2 O-квасцы. Молекулы воды в кристаллогидратах группируются вокруг катиона, но иногда полностью окружают и анион. Вследствие малого заряда иона и большого радиуса иона щелочные металлы наименее склонны к образованию комплексов, в том числе и аквакомплексов. В качестве комплексообразователей в комплексных соединениях невысокой устойчивости выступают ионы лития, бериллия, магния.

Водород. Химические свойства водорода

Водород - наиболее легкий s-элемент. Его электронная конфигурация в основном состоянии 1S 1 . Атом водорода состоит из одного протона и одного электрона. Особенность водорода состоит в том, что его валентный электрон находится непосредственно в сфере действия атомного ядра. У водорода нет промежуточного электронного слоя, поэтому водород нельзя считать электронным аналогом щелочных металлов.

Как и щелочные металлы водород является восстановителем, проявляет степень окисления +1, Спектры водорода сходны со спектрами щелочных металлов. Со щелочными металлами сближает водород его способность давать в растворах гидратированный положительно заряженный ион Н + .

Подобно галогеном атому водорода не достает одного электрона. Этим и обусловлено существование гидрид-иона Н - .

Кроме того, как и атомы галогенов атомы водорода характеризуются высоким значением энергии ионизации (1312 кдж/моль). Таким образом, водород занимает особое положение в Периодической системе элементов.

Водород - самый распространенный элемент во вселенной: он составляет до половины массы солнца и большинства звезд.

На солнце и других планетах водород находится в атомарном состоянии, в межзвездной среде в виде частично ионизированных двухатомных молекул.

Водород имеет три изотопа; протий 1 Н, дейтерий 2 Д и тритий 3 Т, причем тритий - радиоактивный изотоп.

Молекулы водорода отличаются большой прочностью и малой поляризуемостью, незначительными размерами и малой массой и обладают большой подвижностью. Поэтому у водорода очень низкие температуры плавления (-259,2 о С) и кипения (-252,8 о С). Из-за высокой энергии диссоциации (436 кдж/моль) распад молекул на атомы происходит при температурах выше 2000 о С. Водород бесцветный газ без запаха и вкуса. Он имеет малую плотность - 8,99·10 -5 г/см При очень высоких давлениях водород переходит в металлическое состояние. Считается, что на дальних планетах солнечной системы - Юпитере и Сатурне водород находится в металлическом состоянии. Существует предположение, что в состав земного ядра также входит металлический водород, где он находится при сверхвысоком давлении, создаваемым земной мантией.

Химические свойства. При комнатной температуре молекулярный водород реагирует лишь со фтором, при облучении светом - с хлором и бромом, при нагревании с О 2 ,S, Se, N 2 , C, I 2 .

Реакции водорода с кислородом и галогенами протекают по радикальному механизму.

Взаимодействие с хлором - пример неразветвленной реакции при облучении светом (фотохимическая активация), при нагревании (термическая активация).

Сl+ H 2 = HCl + H (развитие цепи)

H+ Сl 2 = HCl + Сl

Взрыв гремучего газа - водородокислородной смеси - пример разветвленного цепного процесса, когда инициированние цепи включает не одну, а несколько стадий:

Н 2 + О 2 = 2ОН

Н+ О 2 = ОН+О

О+ Н 2 = ОН+ Н

ОН+ Н 2 = Н 2 О + Н

Взрывного процесса удается избежать, если работать с чистым водородом.

Поскольку для водорода характерна - положительная (+1) и отрицательная (-1) степень окисления, водород может проявлять и восстановительные, и окислительные свойства.

Восстановительные свойства водорода проявляются при взаимодействии с неметаллами:

Н 2 (г) + Cl 2 (г) = 2НCl (г),

2Н 2 (г) + О 2 (г) = 2Н 2 О (г),

Эти реакции протекают с выделением большого количества теплоты, что свидетельствуют о высокой энергии (прочности) связей Н-Сl, Н-О. Поэтому водород проявляет восстановительные свойства по отношению ко многим оксидам, галогенидам, например:

На этом основано применение водорода в качестве восстановителя для получения простых веществ из оксидов галогенидов.

Еще более сильным восстановителем является атомарный водород. Он образуется из молекулярного в электронном разряде в условиях низкого давления.

Высокой восстановительной активностью обладает водород в момент выделения при взаимодействии металла с кислотой. Такой водород восстанавливает CrCl 3 в CrCl 2:

2CrCl 3 + 2HСl + 2Zn = 2CrCl 2 + 2ZnCl 2 +H 2 ^

Важное значение имеет взаимодействие водорода с оксидом азота (II):

2NO + 2H 2 = N 2 + H 2 O

Используемое в очистительных системах при производстве азотной кислоты.

В качестве окислителя водород взаимодействует с активными металлами:

В данном случае водород ведет себя как галоген, образуя аналогичные галогенидам гидриды .

Гидриды s-элементов I группы имеют ионную структуру типа NaCl. В химическом отношении ионные гидриды ведут себя как основные соединения.

К ковалентным относятся гидриды менее электроотрицательных, чем сам водород неметаллических элементов, например, гидриды состава SiH 4 , ВН 3 , СН 4 . По химической природе гидриды неметаллов являются кислотными соединениями.

Характерной особенностью гидролиза гидридов является выделение водорода, реакция протекает по окислительно-восстановительному механизму.

Основной гидрид

Кислотный гидрид

За счет выделения водорода гидролиз протекает полностью и необратимо (?Н<0, ?S>0). При этом основные гидриды образуют щелочь, а кислотные кислоту.

Стандартный потенциал системы В. Следовательно, ион Н - сильный восстановитель.

В лаборатории водород получают взаимодействием цинка с 20% -й серной кислотой в аппарате Киппа.

Технический цинк часто содержит небольшие примеси мышьяка и сурьмы, которые восстанавливаются водородом в момент выделения до ядовитых газов: арсина SbH 3 и стабина SbH Таким водородом можно отравиться. С химически чистым цинком реакция протекает медленно из-за перенапряжения и хорошего тока водорода получить не удается. Скорость этой реакции увеличивается путем добавления кристалликов медного купороса, реакция ускоряется за счет образования гальванической пары Cu-Zn.

Более чистый водород образуется при действии щелочи на кремний или алюминий при нагревании:

В промышленности чистый водород получают электролизом воды, содержащей электролиты (Na 2 SO 4 , Ba (OH) 2).

Большое количество водорода образуется в качестве побочного продукта при электролизе водного раствора хлорида натрия с диафрагмой, разделяющей катодное и анодное пространство,

Наибольшее количество водорода получают газификацией твердого топлива (антрацита) перегретым водяным паром:

Либо конверсией природного газа (метана) перегретым водяным паром:

Образующаяся смесь (синтез-газ) используется в производстве многих органических соединений. Выход водорода можно увеличить, пропуская синтез-газ над катализатором, при этом СО превращается вСО 2 .

Применение. Большое количество водорода расходуется на синтез аммиака. На получение хлороводорода и соляной кислоты, для гидрогенизации растительных жиров, для восстановления металлов (Mо, W, Fe) из оксидов. Водород-кислородное пламя используют для сварки, резки и плавления металлов.

Жидкий водород используют в качестве ракетного топлива. Водородное топливо является экологически безопасным и более энергоемким, чем бензин, поэтому в будущем оно может заменить нефтепродукты. Уже сейчас в мире на водороде работает несколько сот автомобилей. Проблемы водородной энергетики связаны с хранением и транспортировкой водорода. Водород храня в подземных танкерах в жидком состоянии под давлением 100 атм. Перевозка больших количеств жидкого водорода представляет серьезную опасность.

Наиболее известным и наиболее изученным соединением кислорода является его оксид H 2 O – вода. Чистая вода представляет собой бесцветную прозрачную жидкость без запаха и вкуса. В толстом слое имеет голубовато-зеленоватый цвет.

Вода существует в трех агрегатных состояниях: в твердом – лед, жидком и газообразном – водяной пар.

Из всех жидких и твердых веществ вода обладает наибольшей удельной теплоемкостью. Благодаря этому факту вода является аккумулятором теплоты в различных организмах.

При нормальном давлении температура плавления льда 0 0 С (273 0 К), температура кипения воды +100 0 С (373 0 К). Это аномально высокие значения. При Т 0 +4 0 С вода имеет небольшую плотность, равную 1 г/мл. Выше или ниже этой температуры плотность воды меньше 1 г/мл. Эта особенность отличает воду от всех других веществ, плотность которых с понижением t 0 увеличивается. При переходе воды их жидкого состояния в твердое состояние происходит увеличение объема: из каждых 92 объемов жидкой воды образуется 100 объемов льда. С увеличением объема плотность уменьшается, поэтому, будучи легче воды, лед всегда всплывает на поверхность.

Исследования строения воды показали, что молекула воды построена по типу треугольника, в вершине которого находится электроотрицательный атом кислорода, а в углах оснований – водород. Валентный угол равен 104, 27. Молекула воды полярна – электронная плотность смещена к атому кислорода. Такая полярная молекула может взаимодействовать с другой молекулой с образованием более сложных агрегатов как за счет взаимодействия диполей, так и путем образования водородных связей. Это явление получило название ассоциации воды. Ассоциация молекул воды в основном определяется образованием между ними водородных связей. Молекулярная масса воды в состоянии пара равна 18 и отвечает ее простейшей формуле – Н 2 О. В остальных случаях молекулярная масса воды в кратное число раз больше восемнадцати (18).

Полярность и малые размеры молекулы приводят к тому, что она обладает сильными гидратирующими свойствами.

Диэлектрическая проницаемость воды настолько велика (81), что она оказывает мощное ионизирующее действие на растворенные в ней вещества, вызывая диссоциацию кислот, солей и оснований.

Молекула воды способна присоединиться к различным ионам, образуя гидраты. Эти соединения характеризуются специфическим стрением, напоминая комплексные соединения.

Одним из важнейших продуктов присоединения является ион гидроксония – Н 3 О, который образуется вследствие присоединения иона Н + к неподеленной паре электронов атома кислорода.

Вследствие этого присоединения образующийся ион гидроксония приобретает заряд +1.

Н + + Н 2 О Н 3 О +

Такой процесс возможен в системах, где содержатся вещества, отщепляющие ион водорода.

Вода, как на холоде, так и при нагревании активно взаимодействует со многими металлами, стоящими в ряду активности до водорода. В этих реакциях образуются соответствующие им оксиды или гидроксиды и вытесняется водород.:

2 Fe + 3 HOH = Fe 2 O 3 + 3 H 2

2 Na + 2 HOH = 2 NaOH + H 2

Ca + 2 HOH = Ca (OH) 2 + H

Вода довольно активно присоединяется к основным и кислотным оксидам, образуя соответствующие гидроксиды:

CaO + H 2 O = Ca (OH) 2 – основание

P 2 O 5 + 3 H 2 O = 2 H 3 PO 4 – кислота

Вода, которая присоединена в этих случаях, называется конституционной (в отличие от кристаллизационной в кристаллогидратах).

Вода реагирует с галогенами, в этом случае образуется смесь кислот:

H 2 + HOH HCl + HClO

Наиболее важным свойством воды является ее растворяющая способность.

Вода – самый распространенный растворитель в природе и технике. Большинство химических реакций проводится в воде. Но, пожалуй, наибольшее значение имеют биологические и биохимические процессы, происходящие в растительном и животном организмах с участием белков, жиров, углеводов и других веществ в водной среде организма.

Второе соединение водорода с кислородом – пероксид водорода H 2 O 2 .

Структурная формула Н – О – О – Н, молекулярный вес – 34.

Латинское название Hydrogenii peroxydum.

Это вещество было открыто в 1818 году французским ученым Луи-Жаком Тенаром, который изучал действие различных минеральных кислот на бария пероксид (BaO 2). В природе пероксид водорода образуется в процессе окисления. Наиболее удобным и современным способом получения H 2 O 2 является электролитический способ, который и используется в промышленности. В качестве исходных веществ используют серную кислоту или аммония сульфат.

Современными физико-химическими методами установлено, что оба атома кислорода в пероксиде водорода связаны непосредственно друг с другом неполярной ковалентной связью. связи же между атомами водорода и кислорода (вследствие смещения общих электронов в сторону кислорода) полярны. Поэтому молекула H 2 O 2 также полярна. Между молекулами H 2 O 2 возникает водородная связь, что приводит к их ассоциации с энергией связи О – О, равной 210 кДж, это значительно меньше энергии связи Н – О (470 кДж).

Раствор перекиси водорода – прозрачная бесцветная жидкость, без запаха или со слабым своеобразным запахом, слабокислой реакции. Быстро разлагается под действием света, при нагревании, при соприкосновении с щелочью, окисляющими и восстанавливающими веществами, выделяя кислород. Происходит реакция: H 2 O 2 = H 2 O + O

Малая устойчивость молекул H 2 O 2 обусловлена непрочностью связи О – О.

Хранят его в посуде из темного стекла и в прохладном месте. При действии на кожу концентрированных растворов перекиси водорода образуются ожоги, причем обожженное место болит.

ПРИМЕНЕНИЕ: в медицине применяют 3 % раствор перекиси водорода как кровоостанавливающее средство, дезинфицирующее и дезодорирующее средство для промываний и полосканий при стоматите, ангине, гинекологических заболеваниях и др.

При соприкосновении с ферментом каталазой (из крови, гноя, тканей) действует атомарный кислород в момент выделения. Действие H 2 O 2 кратковременное. Ценность препарата заключается в том, что продукты его разложения безвредны для тканей.

ГИДРОПЕРИТ – комплексное соединение перекиси водорода с мочевиной. Содержание перекиси водорода составляет около 35 %. Применяют как антисептическое средство вместо перекиси водорода.

Одним из основных химических свойств H 2 O 2 является его окислительно-восстановительные свойства. Степень окисления кислорода в H 2 O 2 равна -1, т.е. имеет промежуточное значение между степенью окисления кислорода в воде (-2) и в молекулярном кислороде (0). Поэтому перекись водорода обладает свойствами как окислителя, так и восстановителя, т.е. проявляет окислительно-восстановительную двойственность. Следует отметить, что окислительные свойства H 2 O 2 выражены гораздо сильнее, чем восстановительные и проявляются они в кислой, щелочной и нейтральной средах. Например:

2 KI + H 2 SO 4 + H 2 O 2 = I 2 + K 2 SO 4 + 2 H 2 O

2 I - - 2ē → I 2 0 1 – в-ль

H 2 O 2 + 2 H + + 2ē → 2 H 2 O 1 – ок-ль

2 I - + H 2 O 2 + 2 H + → I 2 + 2 H 2 O

Под действием сильных окислителей H 2 O 2 проявляет восстановительные свойства:

2 KMnO 4 + 5 H 2 O 2 + 3 H 2 SO 4 = 2 MnSO 4 + 5 O 2 + K 2 SO 4 + 8 H 2 O

MnO 4 - + 8H + + 5ē → Mn +2 + 4 H 2 O 2 – ок-ль

H 2 O 2 - 2ē → O 2 + 2 H + 5 – в-ль

2 MnO 4 - + 5 H 2 O 2 + 16 H + → 2 Mn +2 + 8 H 2 O + 5 O 2 + 10 H +

Выводы:

1. Кислород -самый распространенный элементна Земле.

В природе кислород встречается в двух аллотропных видоизменениях: O 2 – дикислород или «обычный кислород» и О 3 – трикислород (озон).

2.Аллотропия – образование разных простых веществ одним элементом.

3.Аллотропные видоизменения кислорода: кислород и озон.

4.Соединения кислорода с водородом -вода и пероксид водорода .

5.Вода существует в трех агрегатных состояниях: в твердом – лед, жидком и газообразном – водяной пар.

6.При Т 0 +4 0 С вода имеет плотность, равную 1 г/мл.

7.Молекула воды построена по типу треугольника, в вершине которого находится электроотрицательный атом кислорода, а в углах оснований – водород.

8.Валентный угол равен 104, 27

9.Молекула воды полярна – электронная плотность смещена к атому кислорода.

12.Сера. Характеристика серы, исходя из ее положения в периодической системе, с точки зрения теории строения атома, возможные степени окисления, физические свойства, распространение в природе,биологическая роль, способы получения, химические свойства. . Применение серы и её соединений в медицине и народном хозяйстве.

СЕРА:

А) нахождение в природе

Б) биологическая роль

В) применение в медицине

Сера широко распространена в природе и встречается как в свободном состоянии (самородная сера), так и в виде соединений – FeSe (пирит), CuS, Ag 2 S, PbS, CaSO 4 и др. Входит в состав различных соединений, содержащихся в природных углях, нефтях и природных газах.

Сера принадлежит к числу элементов, имеющих важное значение для жизненных процессов, т.к. она входит в состав белковых веществ. Содержание серы в организме человека составляет 0, 25 %. Входит в состав аминокислот: цистеина, глютатиона, метионина и др.

Особенно много серы в белках волос, рогов, шерсти. Кроме того, сера является составной частью биологически активных веществ организма: витаминов и гормонов (н-р, инсулина).

В виде соединений сера обнаружена в нервной ткани, в хрящах, костях и в желчи. Она участвует в окислительно-восстановительных процессах организма.

При недостатке серы в организме наблюдается хрупкость и ломкость костей, выпадение волос.

Сера содержится в крыжовнике, винограде, яблоках, капусте, луке репчатом, ржи, горохе, ячмене, гречихе, пшенице.

Рекордсмены: горох 190, соя 244 %.

ОПРЕДЕЛЕНИЕ

Водород – первый элемент Периодической системы химических элементов Д.И. Менделеева. Символ – Н.

Атомная масса – 1 а.е.м. Молекула водорода двухатомна – Н 2 .

Электронная конфигурация атома водорода – 1s 1 . Водород относится к семейству s-элементов. В своих соединениях проявляет степени окисления -1, 0, +1. Природный водород состоит из двух стабильных изотопов – протия 1 Н (99,98%) и дейтерия 2 Н (D) (0,015%) – и радиоактивного изотопа трития 3 Н (Т) (следовые количества, период полураспада – 12,5 лет).

Химические свойства водорода

При обычных условиях молекулярный водород проявляет сравнительно низкую реакционную способность, что объясняется высокой прочностью связей в молекуле. При нагревании вступает во взаимодействие практически со всеми простыми веществами, образованными элементами главных подгрупп (кроме благородных газов, B, Si, P, Al). В химических реакциях может выступать как в роли восстановителя (чаще), так и окислителя (реже).

Водород проявляет свойства восстановителя (Н 2 0 -2е → 2Н +) в следующих реакциях:

1. Реакции взаимодействия с простыми веществами – неметаллами. Водород реагирует с галогенами , причем, реакция взаимодействия со фтором при обычных условиях, в темноте, со взрывом, с хлором – при освещении (или УФ-облучении) по цепному механизму, с бромом и йодом только при нагревании; кислородом (смесь кислорода и водорода в объемном отношении 2:1 называют «гремучим газом»), серой , азотом и углеродом :

H 2 + Hal 2 = 2HHal;

2H 2 + O 2 = 2H 2 O + Q (t);

H 2 + S = H 2 S (t = 150 – 300C);

3H 2 + N 2 ↔ 2NH 3 (t = 500C, p, kat = Fe, Pt);

2H 2 + C ↔ CH 4 (t, p, kat).

2. Реакции взаимодействия со сложными веществами. Водород реагирует с оксидами малоактивных металлов , причем он способен восстанавливать только металлы, стоящие в ряду активности правее цинка:

CuO + H 2 = Cu + H 2 O (t);

Fe 2 O 3 + 3H 2 = 2Fe + 3H 2 O (t);

WO 3 + 3H 2 = W + 3H 2 O (t).

Водород реагирует с оксидами неметаллов :

H 2 + CO 2 ↔ CO + H 2 O (t);

2H 2 + CO ↔ CH 3 OH (t = 300C, p = 250 – 300 атм., kat = ZnO, Cr 2 O 3).

Водород вступает в реакции гидрирования с органическими соединениями класса циклоалканов, алкенов, аренов, альдегидов и кетонов и др. Все эти реакции проводят при нагревании, под давлением, в качестве катализаторов используют платину или никель:

CH 2 = CH 2 + H 2 ↔ CH 3 -CH 3 ;

C 6 H 6 + 3H 2 ↔ C 6 H 12 ;

C 3 H 6 + H 2 ↔ C 3 H 8 ;

CH 3 CHO + H 2 ↔ CH 3 -CH 2 -OH;

CH 3 -CO-CH 3 + H 2 ↔ CH 3 -CH(OH)-CH 3 .

Водород в качестве окислителя (Н 2 +2е → 2Н —) выступает в реакциях взаимодействия со щелочными и щелочноземельными металлами. При этом образуются гидриды – кристаллические ионные соединения, в которых водород проявляет степень окисления -1.

2Na +H 2 ↔ 2NaH (t, p).

Ca + H 2 ↔ CaH 2 (t, p).

Физические свойства водорода

Водород – легкий бесцветный газ, без запаха, плотность при н.у. – 0,09 г/л, в 14,5 раз легче воздуха, t кип = -252,8С, t пл = — 259,2С. Водород плохо растворим в воде и органически растворителях, хорошо растворим в некоторых металлах: никеле, палладии, платине.

По данным современной космохимии водород является самым распространенным элементом Вселенной. Основная форма существования водорода в космическом пространстве – отдельные атомы. По распространенности на Земле водород занимает 9 место среди всех элементов. Основное количество водорода на Земле находится в связанном состоянии – в составе воды, нефти, природного газа, каменного угля и т.д. В виде простого вещества водород встречается редко – в составе вулканических газов.

Получение водорода

Различают лабораторные и промышленные способы получения водорода. К лабораторным способам относят взаимодействие металлов с кислотами (1), а также взаимодействие алюминия с водными растворами щелочей (2). Среди промышленных способов получения водорода большую роль играют электролиз водных растворов щелочей и солей (3) и конверсия метана (4):

Zn + 2HCl = ZnCl 2 + H 2 (1);

2Al + 2NaOH + 6H 2 O = 2Na +3 H 2 (2);

2NaCl + 2H 2 O = H 2 + Cl 2 + 2NaOH (3);

CH 4 + H 2 O ↔ CO + H 2 (4).

Примеры решения задач

ПРИМЕР 1

Задание При взаимодействии 23,8 г металлического олова с избытком соляной кислоты выделился водород, в количестве, достаточном, чтобы получить 12,8 г металлической меди Определите степень окисления олова в полученном соединении.
Решение Исходя из электронного строения атома олова (…5s 2 5p 2) можно сделать вывод, что для олова характерны две степени окисления — +2, +4. На основании этого составим уравнения возможных реакций:

Sn + 2HCl = H 2 + SnCl 2 (1);

Sn + 4HCl = 2H 2 + SnCl 4 (2);

CuO + H 2 = Cu + H 2 O (3).

Найдем количество вещества меди:

v(Cu) = m(Cu)/M(Cu) = 12,8/64 = 0,2 моль.

Согласно уравнению 3, количество вещества водорода:

v(H 2) = v(Cu) = 0,2 моль.

Зная массу олова, найдем его количество вещества:

v(Sn) = m(Sn)/M(Sn) = 23,8/119 = 0,2 моль.

Сравним количества вещества олова и водорода по уравнения 1 и 2 и по условию задачи:

v 1 (Sn): v 1 (H 2) = 1:1 (уравнение 1);

v 2 (Sn): v 2 (H 2) = 1:2 (уравнение 2);

v(Sn): v(H 2) = 0,2:0,2 = 1:1 (условие задачи).

Следовательно, олово взаимодействует с соляной кислотой по уравнению 1 и степень окисления олова равна +2.

Ответ Степень окисления олова равна +2.

ПРИМЕР 2

Задание Газ, выделившийся при действии 2,0 г цинка на 18,7 мл 14,6%-ной соляной кислоты (плотность раствора 1,07 г/мл), пропустили при нагревании над 4,0 г оксида меди (II). Чему равна масса полученной твердой смеси?
Решение При действии цинка на соляную кислоту выделяется водород:

Zn + 2НСl = ZnСl 2 + Н 2 (1),

который при нагревании восстанавливает оксид меди (II) до меди (2):

СuО + Н 2 = Cu + Н 2 О.

Найдем количества веществ в первой реакции:

m(р-ра НСl) = 18,7 . 1,07 = 20,0 г;

m(НСl) = 20,0 . 0,146 = 2,92 г;

v(НСl) = 2,92/36,5 = 0,08 моль;

v(Zn) = 2,0/65 = 0,031 моль.

Цинк находится в недостатке, поэтому количество выделившегося водорода равно:

v(Н 2) = v(Zn) = 0,031 моль.

Во второй реакции в недостатке находится водород, поскольку:

v(СuО) = 4,0/80 = 0,05 моль.

В результате реакции 0,031 моль СuО превратится в 0,031 моль Сu, и потеря массы составит:

m(СuО) — m(Сu) = 0,031×80 — 0,031×64 = 0,50 г.

Масса твердой смеси СuО с Сu после пропускания водорода составит:

4,0-0,5 = 3,5 г.

Ответ Масса твердой смеси СuО с Сu равна 3,5 г.