Как определить опорную реакцию в перемычке. Определение опорных реакций балок. Пример решения задачи на определение реакций опор балки

Расчет выполняется по следующей методике:

1. Заменяем распределенную нагрузку ее равнодействующей, которая является сосредоточенной силой. Для равномерно распределенной нагрузки равнодействующая равна произведению интенсивности нагрузки q на длину участка L, на котором она действует: Fq = q*L.

2. Обозначаем опоры. Общепринято их обозначать буквами А и В. Простая балка имеет одну шарнирно-неподвижную и одну шарнирно-подвижную опоры.

3. Освобождаемся от опор и заменяем их действие на балку реакциями.
Реакции опор при такой нагрузке будут только вертикальными.

4. Составляем уравнения равновесия вида:
M A = 0; M B = 0,
Моментом силы относительно точки называется произведение этой силы на плечо - кратчайшее расстояние от этой точки приложения силы (в общем случае - до линии действия силы).

5. Выполним проверку решения. Для этого составим уравнение равновесия: Y = 0,
Если оно удовлетворено, то реакции найдены правильно, а если нет, но в решении допущена ошибка.

6. Строим эпюру поперечных сил Q x . Для этого определяем значения поперечных сил в характерных точках. Напомним, что поперечная сила в сечении равна сумме проекций всех сил, расположенных только слева или только справа от рассматриваемого сечения, на ось, перпендикулярную оси элемента. Силу, расположенную слева от рассматриваемого сечения и направленную вверх, считают положительной (со знаком «плюс»), а направленную вниз - отрицательной (со знаком «минус»). Для правой части балки - наоборот.
В сечениях, соответствующих точкам приложения сосредоточенных сил, в том числе в точках приложения опорных реакций, необходимо определить два значения поперечной силы: чуть левее рассматриваемой точки и чуть правее ее. Поперечные силы в этих сечениях обозначаются соответственно Q лев и Q прав.
Найденные значения поперечных сил в характерных точках откладываются в некотором масштабе от нулевой линии. Эти значения соединяются прямыми линиями по следующим правилам:
а) если к участку балки нет распределенной нагрузки, то под этим участком значения поперечных сил соединяются прямой линией, параллельной нулевой линии;
б) если на участке балки приложена распределенная нагрузка, то под этим участком значения поперечных сил соединяются прямой, наклонной к нулевой линии. Она может пересекать или не пересекать нулевую линию.
Соединив все значения поперечных сил по указанным правилам, получим график изменения поперечных сил по длине балки. Такой график называется эпюрой Q x .

7. Строим эпюру изгибающих моментов М x . Для этого определяем изгибающие моменты в характерных сечениях. Напомним, что изгибающий момент в рассматриваемом сечении равен сумме моментов всех сил (распределенных, сосредоточенных, в том числе и опорных реакций, а также внешних сосредоточенных моментов), расположенных только слева или только справа от этого сечения. Если любое из перечисленных силовых воздействий стремится повернуть левую часть балки по часовой стрелке, то оно считается положительным (со знаком «плюс»), если против - отрицательным (со знаком «минус»), а для правой части наоборот.
В сечениях, соответствующих точкам приложения сосредоточенных моментов, необходимо определить два значения изгибающего момента: чуть левее рассматриваемой точки и чуть правее ее. Изгибающие моменты в этих точках обозначаются соответственно М лев и М прав. В точках приложения сил определяется одно значение изгибающего момента.
Полученные значения откладываются в некотором масштабе от нулевой линии. Эти значения соединяются в соответствии со следующими правилами:
а) если на участке балки нет распределенной нагрузки, то под этим участком балки два соседних значения изгибающих моментов соединяются прямой линией;
б) если к участку балки приложена распределенная нагрузка, то под этим участком значения изгибающих моментов для двух соседних точек соединяются по параболе.

Пример1.

Примеры выполнения задания (при действии на балку равномерно распределенной нагрузки и сосредоточенных сил и моментов).

Разберем на конкретных примерах построение эпюр для балок, находящихся под действием равномерно распределенной нагрузки и сосредоточенных сил и моментов, расположенных в одной плоскости.

Построить эпюры поперечных сил и изгибающих моментов для боевой оси круглого поперечного сечения ГМ-30, изображенного на рис.1

Дано:

[σ]=21000 kH/м 2

Определить из расчета на прочность размеры поперечного сечения оси.

Решение:

Отбрасывают опоры А и В, а их действие на балку заменяют реакциями опор R A и R B .

Направление опорных реакций выбирают положительным, т.е. направленным вверх. Если в результате расчета значение какой-либо реакции получается отрицательным, то это означает, что в действительности ее направление противоположно предварительно принятому, для чего необходимо поменять направление этой реакции и считать ее далее положительной.

Так как балка под действием приложенных к ней сил и моментов находится в равновесии, то для нее справедливы следующие три уравнения статики:

1 уравнение: :

где – равнодействующая распределенной нагрузки интенсивностью на длине балки « », - плечо этой равнодействующей относительно точки А.

Из уравнения 1 имеем:

рис.1 Расчетная схема балки и эпюры и

2 уравнение : (2)

3 уравнение – сумма моментов всех сил относительно точки В – используют для проверки правильности найденных значений реакций.

Подставив значения получим , т.е. составленное уравнение удовлетворяется, это указывает на правильность определения опорных реакций:

Примечание:

3. Момент считается положительным, если направлен против часовой стрелки, и отрицательным, если направлен по часовой стрелке.

4. Сила положительна, если направлена по оси «Y» вверх, и отрицательна, если направлена вниз.

3.3.1.2. Построение эпюр и .

Балку разбивают на участки I и II и для каждого участка составляют аналитические зависимости изменения внутренних силовых факторов, с помощью которых производят построение эпюр и .

На участке балки на расстоянии от левого конца проводят сечение и рассматривают равновесие левой части балки. Составляют уравнение для поперечной силы и изгибающего момента :



Выражение для силы представляет собой уравнение прямой, параллельной оси абсцисс. Зависимость от линейная, поэтому для построения эпюры на участке I достаточно определить величины при двух значениях аргумента :

1) при (в начале участка I);

2) при м (в конце участка I);

По полученным значениям и на рис.1 строят эпюры и для первого участка балки.

Примечание:

1. Знак «плюс» перед значением реакций свидетельствует о том, что принятое направление реакций соответствует их действительному направлению.

2. В случае отрицательного значения реакции необходимо изменять направление этой реакции на расчетной схеме и далее принимать ее значение положительным.

На участке II балки на расстоянии от правого конца балки проводят поперечное сечение и рассматривают равновесие отсечённой правой части балки.

Уравнение для силы на II участке представляет собой уравнение прямой линии, наклонённой к оси абсцисс. Для её построения достаточно знать координаты двух точек (обычно выбирают координаты границ участка).

Проводим через две полученные точки прямую поперечной силы (рис.1), так как прямая эпюры поперечной силы пересекает ось , то в точке пересечения на эпюре изгибающих моментов должен быть экстремум (). Находят координату точки пересечения . Для этого приравнивают выражение поперечной силы (4 ) к нулю, т.е.: .

3.3.1.3. Определение диаметра поперечного сечения .

Для определения диаметра балки используют условие прочности при изгибе , где – осевой момент сопротивления сечения изгибу.

Таким образом определены размеры поперечного сечения оси, исходя из построенных эпюр и .

Рассмотренный в § 2.7 свободный брус был нагружен заданными нагрузками (силами и моментами), находящимися в равновесии (см. рис. 3.7). Обычно заданные нагрузки не бывают взаимно уравновешенными; неподвижность конструкции под действием этих нагрузок обеспечивается благодаря наличию опор, соединяющих ее с основанием. В опорах возникают реакции, которые вместе с заданными нагрузками представляют уравновешенную систему внешних сил, действующих на конструкцию.

Как известно из курса теоретической механики, любое тело обладает в плоскости тремя степенями свободы. Поэтому для обеспечения геометрической неизменяемости системы (бруса) необходимо наложить на нее (в плоскости) три связи.

Рассмотрим различные типы опор плоских систем.

1. Защемление, или заделка (рис. 4.7, а). Защемленный (или заделанный) конец бруса не может ни смещаться поступательно, ни поворачиваться. Следовательно, число степеней свободы бруса с защемленным концом равно нулю. В опоре могут возникать: вертикальная реакция (сила R - рис. 4.7, а), препятствующая вертикальному смещению конца бруса; горизонтальная реакция (сила Н), исключающая возможность его горизонтального смещения и реактивный момент препятствующий повороту. Таким образом, закрепление бруса с помощью заделки накладывает на него три связи и обеспечивает его неподвижность.

2. Шарнирно неподвижная опора (рис. 4.7, б). Поперечное сечение бруса, проходящее через шарнирно неподвижную опору, не может смещаться поступательно. В опоре возникает реактивная сила, проходящая через центр шарнира. Ее составляющими являются вертикальная сила R, препятствующая вертикальному смещению, и горизонтальная сила Н, исключающая горизонтальное смещение закрепленного сечения бруса. Опора не препятствует повороту бруса относительно центра шарнира, и, следовательно, брус, закрепленный при помощи одной такой опоры, имеет одну степень свободы. Закрепление бруса с помощью шарнирно неподвижной опоры, накладывает на него две связи.

3. Шарнирно подвижная опора (рис. 4.7, в). Поперечное сечение бруса, проходящее через шарнирно подвижную опору, может смещаться параллельно опорной плоскости и поворачиваться, но оно не может смещаться перпендикулярно к опорной плоскости. В опоре возникает только одна реакция в виде силы R, перпендикулярной к опорной плоскости. Закрепление бруса с помощью такой опоры накладывает на него одну связь.

Рассмотренные типы опор принято также изображать с помощью стерженьков.

Шарнирно подвижную опору изображают в виде стерженька, имеющего по концам шарниры (рис. 5.7, а). Нижний шарнир неподвижен, а верхний может смещаться лишь по прямой линии, перпендикулярной к оси стерженька.

Это соответствует тем условиям закрепления, которые обеспечивает шарнирно подвижная опора (см. рис. 4.7, в). Опорная реакция действует только вдоль оси стерженька. Собственные деформации его при расчетах не учитываются, т. е. стерженек считается бесконечно жестким.

Шарнирно неподвижную опору изображают с помощью двух стерженьков с шарнирами по концам (рис. 5.7, б). Верхний шарнир является общим для обоих стерженьков. Направления стерженьков могут быть произвольными. Они, однако, не должны быть расположены на одной прямой.

Заделку (защемление) можно изображать с помощью трех стерженьков с шарнирами по концам, как показано на рис. 5.7, в.

Число стерженьков в схематическом изображении опоры равно числу составляющих опорной реакции и числу связей, накладываемых этой опорой на конструкцию.

Для того чтобы брус не перемещался под нагрузкой, он должен быть геометрически неизменяемо (неподвижно) соединен с основанием, что в случае плоского действия сил, как уже отмечалось, достигается путем наложения на него трех внешних связей.

Это можно сделать с помощью одной заделки (рис. 6.7, а) или одной шарнирно неподвижной и одной шарнирно подвижной опоры (рис. 6.7, б), или с помощью трех шарнирно подвижных опор, направления реакций которых не пересекаются в одной точке (рис. 6.7, в).

Если направления трех опорных стерженьков пересекаются в одной точке О (рис. 7.7, а,б), то система является мгновенно изменяемой, так как в этом случае ни один опорный стерженек не препятствует весьма малому повороту бруса вокруг точки О; такое расположение опорных стерженьков недопустимо.

Рассмотрим геометрически неизменяемые системы, состоящие из нескольких брусьев.

На рис. 8.7, а, например, показана система из двух брусьев (АВ и ВС), на каждый из которых наложено три связи. На брус ВС одну связь накладывает опорный стерженек CD, препятствующий вертикальному смещению точки С бруса, и две связи - шарнир В, препятствующий вертикальному и горизонтальному смещению точки В бруса.

На брус АВ все три связи налагает заделка А; шарнир же В не может препятствовать ни поступательным смещениям, ни поворотам бруса АВ и, следовательно, не налагает на него связей.

На рис. 8.7, б показана геометрически неизменяемая система, состоящая из трех брусьев (АС, CD и DF). На каждый из них наложено три связи. Так, например, шарнир С налагает на брус CD две связи (так как препятствует горизонтальному и вертикальному смещениям точки С), а шарнир - одну связь (так как препятствует только вертикальному смещению точки ).

Системы, изображенные на рис. 8.7, называются многопролетными шарнирными балками.

Общее число неизвестных опорных реакций при вариантах закрепления бруса, показанных на рис. 6.7, а, б, в, равно трем. Следовательно, эти реакции можно найти при помощи трех уравнений равновесия, которые составляются для плоской системы сил. По значениям же опорных реакций и внешних нагрузок можно определить [по формулам (2.7) - (4.7)] внутренние усилия в любом поперечном сечении бруса. Поэтому брус, закрепленный путем наложения на него трех связей, является не только геометрически неизменяемым, но и статически определимым. Наложение на него большего числа связей делает брус статически неопределимым, так как в этом случае все опорные реакции нельзя определить из одних лишь уравнений равновесия.

Уравнения равновесия, составляемые для определения опорных реакций, можно представить в трех различных вариантах:

1) в виде сумм проекций сил на две произвольные не параллельные друг другу оси и суммы моментов сил относительно любой точки плоскости МО);

2) в виде суммы проекций сил на произвольную ось и двух сумм моментов относительно любых точек плоскости, не лежащих на одном перпендикуляре к указанной оси проекций

3) в виде трех сумм моментов относительно любых точек плоскости, не лежащих на одной прямой

Выбор того или иного варианта составления уравнений равновесия, а также выбор точек и направлений осей, используемых при составлении этих уравнений, производится в каждом конкретном случае с таким расчетом, чтобы по возможности не проводить совместное решение уравнений. Для проверки правильности определения опорных реакций полученные их значения рекомендуется подставить в какое-либо уравнение равновесия, не использованное ранее.

На многопролетную шарнирную балку, изображенную на рис. 8.7, а, наложено четыре внешние связи (три в сечении А и одна в сечении С), а на балку, изображенную на рис. 8.7, б, - пять внешних связей (две в сечении А и по одной в сечениях В, Е и F).

Однако если на каждый брус, составляющий многопролетную шарнирную балку, наложено по три связи, то эта балка статически определима и опорные реакции можно найти из уравнений статики.

Кроме трех уравнений равновесия всех сил, действующих на многопролетную шарнирную балку, составляются уравнения, выражающие равенство нулю моментов сил, приложенных по одну сторону от каждого шарнира (соединяющего отдельные части балки), относительно центра этого шарнира. Например, для балки, изображенной на рис. 8.7, а, кроме трех уравнений равновесия всех действующих на нее сил, составляется уравнение моментов левых (или правых) сил относительно шарнира , а для балки, изображенной на рис. 8.7,б, - относительно шарниров С и D.

Рассмотрим пример определения опорных реакций простой однопролетной балки, расчетная схема которой изображена на рис. 9.7, а. Отбросим опоры и заменим их влияние на балку опорными реакциями RA, Н и RB (рис. 9.7, б). Обычно балка с отброшенными опорами отдельно не изображается, а обозначения и направления опорных реакций указываются на расчетной схеме балки. Реакции представляют собой вертикальную и горизонтальную составляющие полной реакции шарнирно неподвижной опоры А; сила же является полной реакцией опоры В. Направления опорных реакций выбираются произвольно; если в результате расчета значение какой-либо реакции получается отрицательным, то, значит, в действительности ее направление противоположно предварительно принятому.

Способы определения опорных реакций изучаются в курсе теоретической механики. Остановимся только практических вопросах методики вычисления опорных реакций, в частности для шарнирно опертой балки с консолью (рис. 7.4).

Нужно найти реакции: , и . Направления реакций выбираем произвольно. Направим обе вертикальные реакции вверх, а горизонтальную реакцию – влево.

Нахождение и проверка опорных реакций в шарнирной опоре

Для вычисления значений реакций опор составим уравнения статики:

Сумма проекций всех сил (активных и реактивных) на ось z равна нулю: .

Поскольку на балку действуют только вертикальные нагрузки (перпендикулярные к оси балки), то из этого уравнения находим: горизонтальная реакция неподвижной .

Сумма моментов всех сил относительно опоры А равна нулю: .

Для момента силы: считаем момент силы положительным, если он вращает балку относительно точки против хода часовой стрелки.

Необходимо найти равнодействующую распределенной . Распределенная погонная нагрузка равна площади распределенной нагрузки и приложена в этой эпюры (посредине участка длиной ).

Сумма моментов всех сил относительно опоры B равна нулю: .

Знак «минус» в результате говорит: предварительное направление опорной реакции было выбрано неверно. Меняем направление этой опорной реакции на противоположное (см. рис. 7.4) и про знак «минус» забываем.

Проверка опорных реакций

Сумма проекций всех сил на ось y должна быть равна нулю: .

Силы, направление которых совпадает с положительным направлением оси y, проектируются на нее со знаком «плюс».

Задание

Задана горизонтальная двух опорная балка. Балка нагружена активными силами: сосредоточенной F , распределенной силой интенсивностью q и парой сил с моментом М (табл.2.1 и рис 2.6).

Цель работы построить расчётную схему балки, составить уравнения равновесия балки, определить реакции ее опор и выявить наиболее нагруженную опору.

Теоретическое обоснование

Во многих машинах и сооружениях встречаются конструктивные элементы, предназначенные преимущественно для восприятия нагрузок, направленных перпендикулярно их оси. Расчетные схемы таких элементов (валы, части металлоконструкции и др.) могут быть представлены балкой. Балки имеют опорные устройства для передачи усилий и сопряжения с другими элементами.

Основными типами опор балок являются шарнирно – подвижная, шарнирно – неподвижная опоры и жесткая заделка.

Шарнирно – подвижная опора (рис.2.1,а) допускает поворот балки вокруг оси шарнира и линейное перемещение на незначительное расстояние параллельно опорной плоскости. Точкой приложения опорной реакции является центр шарнира. Направление реакции R – перпендикуляр к опорной поверхности.

Шарнирно – неподвижная опора (рис.2.1,6) допускает только поворот балки вокруг оси шарнира. Точкой приложения являются также центр шарнира. Направления реакции здесь неизвестно, оно зависит от нагрузки, приложенной к балке. Поэтому для такой опоры определяются две неизвестные – взаимно перпендикулярные составляющие R x и R y опорной реакции.

Жесткая заделка (защемление) (рис.2.1,в) не допускает ни линейных перемещений, ни поворота. Неизвестными в данном случае являются не только величина, но и её точка приложения. Таким образом, для определения опорной реакции необходимо найти три неизвестные: составляющие R x и R y по осям координат и реактивный момент MR относительно центра тяжести опорного сечения балки.

А б в

Рис.2.1

Равновесие балки под действием любой системы заданных сил, расположенных в одной плоскости, может быть обеспечено одной жёсткой заделкой или двумя опорами – подвижной и неподвижной. Балки называются соответственно консольными (рис.2.2,а) или двух опорными (рис.2.2,б)

Рис.2.2

На балку действуют заданные силы и пары сил. Силы по способу приложения делятся на распределенные и сосредоточенные. Распределенные нагрузки задаются интенсивно q, Н/м и длиной 1, м. равномерно распределенные нагрузки условно изображаются в виде прямоугольника, в котором параллельные стрелки указывают, в какую сторону действует нагрузка (рис.2.3). В задачах статики равномерно – распределенную нагрузку можно заменять равнодействующей сосредоточенной силой Q, численно равной произведению q * 1, приложенной посредине длины и направленной в сторону действия q.


Рис.2.3 Рис. 2.4

Сосредоточенные нагрузки приложены на сравнительно небольшой длине, поэтому считается, что они приложены в точке. Если сосредоточенная сила приложена под углом к балке, то для определения реакции опор удобно разложить её на две составляющие – F x = Fcos α и F y =F sin α (рис.2.4).

Реакции опор балки определяются из условий равновесия плоской системы произвольно расположенных сил. Для плоской системы можно составить три независимых условия равновесия:

∑F ix = 0; ∑F iy = 0; ∑M io = 0 или

∑М ia = 0; ∑M iB = 0; ∑M iC = 0 или } (2.1)

∑M iA = 0; ∑M iB = 0; ∑F ix = 0.

Где О, А,В, С – центры моментов.

Рационально выбрать такие уравнения равновесия, в каждое из которых входила бы по одной неизвестной реакции.

Порядок выполнения работы

1. В соответствии с заданием изобразить балку и действующие заданные силы.

Выбрать расположение координатных осей: совместить ось х с балкой, а ось у направить перпендикулярно оси х.

1. Произвести необходимые преобразования: силу, наклоненную к оси балки под углом а, заменить двумя взаимно перпендикулярными составляющими, а равномерно распределенную нагрузку – её равнодействующей.

2. Освободить балку от опор, заменив их действие реакциями опор, направленными вдоль осей координат.

3. Составить уравнения равновесия балки, чтобы решением каждого из трёх уравнений было определение одной из неизвестных реакций опор.

4. Проверить правильность определения реакций опор по уравнению, которое не было использовано для решения задач.

5. Сделать вывод о наиболее нагруженной опоре.

6. Ответить на контрольные вопросы.

Контрольные вопросы

1.Сколько независимых уравнений равновесия можно составить для плоской системы параллельных сил?

2.Какие составляющие реакции опор балок возникают в шарнирно – подвижной, шарнирно – неподвижной опорах и жёсткой заделке?

3.Какую точку целесообразно выбрать в качестве центра момента при определении реакций опор?

4.Какая система является статически неопределимой?

Пример выполнения

1.Задание:

q = 5 H/м, F = 25 H, M = 2 H*м, α = 60°

2.Преобразование заданных сил:

F x = F cos α = 25cos 60° = 12.500H, F y = F sinα = 25 sin60° = 21.625H

Q = q*1 = 5*6 =30 H.

Рис.2.5

3.Составим расчётную схему (рис.2.5)

4.Уравнения равновесия и определение реакций опор:

а) ∑M ia = 0; -Q *3 – F y * 7.5+ R B * 8.5 – M = 0;

б) ∑M iB =0: - R Ay *8.5 + Q *5.5 + F y *1 – M = 0:

в) ∑F ix =0: R Ax + F x =0: R Ax = - F x = - 12.500H.

5.Проверка:

∑F iy = 0; R Ay = Q – F y + R B = 0; 21.724 – 30 – 21.651 + 29.927 = 0; 0 = 0

Наиболее нагруженной является опора В – R B =29.927 Н. Нагрузка на опору А – R A =

Литература:

Таблица 2.1

№ варианта № схемы на рис. 2.6 q , Н/м F, Н М, Н м , град
4,5
2,5
4,5
3,5
6,5
1,5
0,5