Закон электромагнитной индукции. Кто открыл явление электромагнитной индукции


История открытия электромагнитной индукции. Открытия Ганса Кристиана Эрстеда и Андре Мари Ампера показали, что электричество обладает магнитной силой. Влияние магнитных явлений на электрические было открыто Майклом Фарадеем. Ганс Кристиан Эрстед Андре Мари Ампер


Майкл Фараде́й () «Превратить магнетизм в электричество»- записал он в своём дневнике в 1822 году. Английский физик, основоположник учения об электромагнитном поле, иностранный почетный член Петербургской Академии Наук (1830).




Описание опытов Майкла Фарадея На деревянный брусок намотаны две медные проволоки. Одна из проволок была соединена с гальванометром, другая – с сильной батареей. При замыкании цепи наблюдалось внезапное, но чрезвычайно слабое действие на гальванометре, и то же самое действие замечалось при прекращении тока. При непрерывном же прохождении тока через одну из спиралей не удалось обнаружить отклонения стрелки гальванометра


Описание опытов Майкла Фарадея Другой опыт заключался в регистрации всплесков тока на концах катушки, внутрь которой вставлялся постоянный магнит. Такие всплески Фарадей назвал "волнами электричества"






ЭДС индукции ЭДС индукции, вызывающая всплески тока ("волны электричества") зависит не от величины магнитного потока, а от скорости его изменения.
















1. Определить направление линий индукции внешнего поля В (выходят из N и входят в S). 2.Определить, увеличивается или уменьшается магнитный поток через контур (если магнит вдвигается в кольцо, то Ф>0, если выдвигается, то Ф 0, если выдвигается, то Ф 0, если выдвигается, то Ф 0, если выдвигается, то Ф 0, если выдвигается, то Ф
3. Определить направление линий индукции магнитного поля В, созданного индукционным током (если Ф>0, то линии В и В направлены в противоположные стороны; если Ф 0, то линии В и В направлены в противоположные стороны; если Ф 0, то линии В и В направлены в противоположные стороны; если Ф 0, то линии В и В направлены в противоположные стороны; если Ф 0, то линии В и В направлены в противоположные стороны; если Ф


Вопросы Сформулируйте закон электромагнитной индукции. Кто является основоположником этого закона? Что такое индукционный ток и как определить его направление? От чего зависит величина ЭДС индукции? Принцип действия каких электрических аппаратов основан на законе электромагнитной индукции?

До сих пор мы рассматривали электрические и магнитные поля, не изменяющиеся с течением времени. Было выяснено, что электрическое поле создается электрическими зарядами, а магнитное поле - движущимися зарядами, т. е. электрическим током. Перейдем к знакомству с электрическим и магнитным полями, которые меняются со временем.

Самый важный факт, который удалось обнаружить, - это теснейшая взаимосвязь между электрическим и магнитным полями. Изменяющееся во времени магнитное поле порождает электрическое поле, а изменяющееся электрическое поле порождает магнитное. Без этой связи между полями разнообразие проявлений электромагнитных сил не было бы столь обширным, каким оно является на самом деле. Не существовало бы ни радиоволн, ни света.

Не случайно первый, решающий шаг в открытии новых свойств электромагнитных взаимодействий был сделан основоположником представлений об электромагнитном поле - Фарадеем. Фарадей был уверен в единой природе электрических и магнитных явлений. Благодаря этому он сделал открытие, которое впоследствии легло в основу устройства генераторов всех электростанций мира, превращающих механическую энергию в энергию электрического тока. (Другие источники: гальванические элементы, аккумуляторы и др. - дают ничтожную долю вырабатываемой энергии.)

Электрический ток, рассуждал Фарадей, способен намагнитить кусок железа. Не может ли магнит, в свою очередь, вызвать появление электрического тока?

Долгое время эту связь обнаружить не удавалось. Трудно было додуматься до главного, а именно: только движущийся магнит или меняющееся во времени магнитное поле может возбудить электрический ток в катушке.

Какого рода случайности могли помешать открытию, показывает следующий факт. Почти одновременно с Фарадеем швейцарский физик Колладон пытался получить электрический ток в катушке с помощью магнита. При работе он пользовался гальванометром, легкая магнитная стрелка которого помещалась внутри катушки прибора. Чтобы магнит не оказывал непосредственного влияния на стрелку, концы катушки, в которую Колладон вдвигал магнит, надеясь получить в ней ток, были выведены в соседнюю комнату и там присоединены к гальванометру. Вставив магнит в катушку, Колладон шел в соседнюю комнату и с огорчением

убеждался, что гальванометр не показывает тока. Стоило бы ему все время наблюдать за гальванометром и попросить кого-нибудь заняться магнитом, замечательное открытие было бы сделано. Но этого не случилось. Покоящийся относительно катушки магнит не вызывает в ней тока.

Явление электромагнитной индукции заключается в возникновении электрического тока в проводящем контуре, который либо покоится в переменном во времени магнитном поле, либо движется в постоянном магнитном поле таким образом, что число линий магнитной индукции, пронизывающих контур, меняется. Оно было открыто 29 августа 1831 г. Редкий случай, когда дата нового замечательного открытия известна так точно. Вот описание первого опыта, данное самим Фарадеем:

«На широкую деревянную катушку была намотана медная проволока длиной в 203 фута и между витками ее намотана проволока такой же длины, но изолированная от первой хлопчатобумажной нитью. Одна из этих спиралей была соединена с гальванометром, а другая - с сильной батареей, состоящей из 100 пар пластин... При замыкании цепи удавалось заметить внезапное, но чрезвычайно слабое действие на гальванометре, и то же самое замечалось при прекращении тока. При непрерывном же прохождении тока через одну из спиралей не удавалось отметить ни действия на гальванометр, ни вообще какого-либо индукционного действия на другую спираль, несмотря на то что нагревание всей спирали, соединенной с батареей, и яркость искры, проскакивающей между углями, свидетельствовали о мощности батареи» (Фарадей М. «Экспериментальные исследования по электричеству», 1-я серия).

Итак, первоначально была открыта индукция в неподвижных друг относительно друга проводниках при замыкании и размыкании цепи. Затем, ясно понимая, что сближение или удаление проводников с током должно приводить к тому же результату, что и замыкание и размыкание цепи, Фарадей с помощью опытов доказал, что ток возникает при перемещении катушек друг

относительно друга. Знакомый с трудами Ампера, Фарадей понимал, что магнит - это совокупность маленьких токов, циркулирующих в молекулах. 17 октября, как зарегистрировано в его лабораторном журнале, был обнаружен индукционный ток в катушке во время вдвигания (или выдвигания) магнита. В течение одного месяца Фарадей опытным путем открыл все существенные особенности явления электромагнитной индукции.

В настоящее время опыты Фарадея может повторить каждый. Для этого надо иметь две катушки, магнит, батарею элементов и достаточно чувствительный гальванометр.

В установке, изображенной на рисунке 238, индукционный ток возникает в одной из катушек при замыкании или размыкании электрической цепи другой катушки, неподвижной относительно первой. В установке на рисунке 239 с помощью реостата меняется сила тока в одной из катушек. На рисунке 240, а индукционный ток появляется при движении катушек друг относительно друга, а на рисунке 240, б - при движении постоянного магнита относительно катушки.

Уже сам Фарадей уловил то общее, от чего зависит появление индукционного тока в опытах, которые внешне выглядят по-разному.

В замкнутом проводящем контуре возникает ток при изменении числа линий магнитной индукции, пронизывающих площадь, ограниченную этим контуром. И чем быстрее меняется число линий магнитной индукции, тем больше возникающий индукционный ток. При этом причина изменения числа линий магнитной индукции совершенно безразлична. Это может быть и изменение числа линий магнитной индукции, пронизывающих площадь неподвижного проводящего контура вследствие изменения силы тока в соседней катушке (рис. 238), и изменение числа линий индукции вследствие движения контура в неоднородном магнитном поле, густота линий которого меняется в пространстве (рис. 241).

Электромагнитная индукция - явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока , проходящего через него. Электромагнитная индукция была открыта Майклом Фарадеем 29 августа 1831 года . Он обнаружил, что электродвижущая сила (ЭДС), возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина электродвижущей силы не зависит от того, что является причиной изменения потока - изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток , вызванный этой ЭДС, называется индукционным током.

Энциклопедичный YouTube

  • 1 / 5

    Согласно закону электромагнитной индукции Фарадея (в СИ):

    E = − d Φ B d t {\displaystyle {\mathcal {E}}=-{{d\Phi _{B}} \over dt}} - электродвижущая сила , действующая вдоль произвольно выбранного контура, = ∬ S B → ⋅ d S → , {\displaystyle =\iint \limits _{S}{\vec {B}}\cdot d{\vec {S}},} - магнитный поток через поверхность, ограниченную этим контуром.

    Знак «минус» в формуле отражает правило Ленца , названное так по имени русского физика Э. Х. Ленца :

    Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.

    Для катушки, находящейся в переменном магнитном поле, закон Фарадея можно записать следующим образом:

    E = − N d Φ B d t = − d Ψ d t {\displaystyle {\mathcal {E}}=-N{{d\Phi _{B}} \over dt}=-{{d\Psi } \over dt}} E {\displaystyle {\mathcal {E}}} - электродвижущая сила, N {\displaystyle N} - число витков, Φ B {\displaystyle \Phi _{B}} - магнитный поток через один виток, Ψ {\displaystyle \Psi } - потокосцепление катушки.

    Векторная форма

    В дифференциальной форме закон Фарадея можно записать в следующем виде:

    rot E → = − ∂ B → ∂ t {\displaystyle \operatorname {rot} \,{\vec {E}}=-{\partial {\vec {B}} \over \partial t}} (в системе СИ) rot E → = − 1 c ∂ B → ∂ t {\displaystyle \operatorname {rot} \,{\vec {E}}=-{1 \over c}{\partial {\vec {B}} \over \partial t}} (в системе СГС).

    В интегральной форме (эквивалентной):

    ∮ ∂ S ⁡ E → ⋅ d l → = − ∂ ∂ t ∫ S B → ⋅ d s → {\displaystyle \oint _{\partial S}{\vec {E}}\cdot {\vec {dl}}=-{\partial \over \partial t}\int _{S}{\vec {B}}\cdot {\vec {ds}}} (СИ) ∮ ∂ S ⁡ E → ⋅ d l → = − 1 c ∂ ∂ t ∫ S B → ⋅ d s → {\displaystyle \oint _{\partial S}{\vec {E}}\cdot {\vec {dl}}=-{1 \over c}{\partial \over \partial t}\int _{S}{\vec {B}}\cdot {\vec {ds}}} (СГС)

    Здесь E → {\displaystyle {\vec {E}}} - напряжённость электрического поля , B → {\displaystyle {\vec {B}}} - магнитная индукция , S {\displaystyle S\ } - произвольная поверхность, - её граница. Контур интегрирования ∂ S {\displaystyle \partial S} подразумевается фиксированным (неподвижным).

    Следует отметить, что закон Фарадея в такой форме, очевидно, описывает лишь ту часть ЭДС, что возникает при изменении магнитного потока через контур за счёт изменения со временем самого поля без изменения (движения) границ контура (об учете последнего см. ниже).

    Если же, скажем, магнитное поле постоянно, а магнитный поток изменяется вследствие движения границ контура (например, при увеличении его площади), то возникающая ЭДС порождается силами, удерживающими заряды на контуре (в проводнике) и силой Лоренца , порождаемой прямым действием магнитного поля на движущиеся (с контуром) заряды. При этом равенство E = − d Φ / d t {\displaystyle {\mathcal {E}}=-{{d\Phi }/dt}} продолжает соблюдаться, но ЭДС в левой части теперь не сводится к ∮ ⁡ E → ⋅ d l → {\displaystyle \oint {\vec {E}}\cdot {\vec {dl}}} (которое в данном частном примере вообще равно нулю). В общем случае (когда и магнитное поле меняется со временем, и контур движется или меняет форму) последняя формула верна так же, но ЭДС в левой части в таком случае есть сумма обоих слагаемых, упомянутых выше (то есть порождается частично вихревым электрическим полем, а частично силой Лоренца и силой реакции движущегося проводника).

    Потенциальная форма

    При выражении магнитного поля через векторный потенциал закон Фарадея принимает вид:

    E → = − ∂ A → ∂ t {\displaystyle {\vec {E}}=-{\partial {\vec {A}} \over \partial t}} (в случае отсутствия безвихревого поля, то есть тогда, когда электрическое поле порождается полностью только изменением магнитного, то есть электромагнитной индукцией).

    В общем случае, при учёте и безвихревого (например, электростатического) поля имеем:

    E → = − ∇ φ − ∂ A → ∂ t {\displaystyle {\vec {E}}=-\nabla \varphi -{\partial {\vec {A}} \over \partial t}}

    Подробнее

    Поскольку вектор магнитной индукции по определению выражается через векторный потенциал так:

    B → = r o t A → ≡ ∇ × A → , {\displaystyle {\vec {B}}=rot\ {\vec {A}}\equiv \nabla \times {\vec {A}},}

    то можно подставить это выражение в

    r o t E → ≡ ∇ × E → = − ∂ B → ∂ t , {\displaystyle rot\ {\vec {E}}\equiv \nabla \times {\vec {E}}=-{\frac {\partial {\vec {B}}}{\partial t}},} ∇ × E → = − ∂ (∇ × A →) ∂ t , {\displaystyle \nabla \times {\vec {E}}=-{\frac {\partial (\nabla \times {\vec {A}})}{\partial t}},}

    и, поменяв местами дифференцирование по времени и пространственным координатам (ротор):

    ∇ × E → = − ∇ × ∂ A → ∂ t . {\displaystyle \nabla \times {\vec {E}}=-\nabla \times {\frac {\partial {\vec {A}}}{\partial t}}.}

    Отсюда, поскольку ∇ × E → {\displaystyle \nabla \times {\vec {E}}} полностью определяется правой частью последнего уравнения, видно, что вихревая часть электрического поля (та часть, которая имеет ротор, в отличие от безвихревого поля ∇ φ {\displaystyle \nabla \varphi } ) - полностью определяется выражением

    − ∂ A → ∂ t . {\displaystyle -{\frac {\partial {\vec {A}}}{\partial t}}.}

    Т.е. в случае отсутствия безвихревой части можно записать

    E → = − ∂ A → ∂ t , {\displaystyle {\vec {E}}=-{\frac {\partial {\vec {A}}}{\partial t}},}

    а в общем случае

    E → = − ∇ φ − d A → d t . {\displaystyle {\vec {E}}=-\nabla \varphi -{\frac {d{\vec {A}}}{dt}}.} 1831 года наступил триумф: он открыл явление электромагнитной индукции. Установка, на которой Фарадей сделал своё открытие, заключалась в том, что Фарадей изготовил кольцо из мягкого железа примерно 2 см шириной и 20 см диаметром и намотал много витков медной проволоки на каждой половине кольца. Цепь одной обмотки замыкала проволока, в её витках находилась магнитная стрелка, удаленная настолько, чтобы не сказывалось действие магнетизма, созданного в кольце. Через вторую обмотку пропускался ток от батареи гальванических элементов . При включении тока магнитная стрелка совершала несколько колебаний и успокаивалась; когда ток прерывали, стрелка снова колебалась. Выяснилось, что стрелка отклонялась в одну сторону при включении тока и в другую, когда ток прерывался. М. Фарадей установил, что «превращать магнетизм в электричество» можно и с помощью обыкновенного магнита.

    В это же время американский физик Джозеф Генри также успешно проводил опыты по индукции токов, но пока он собирался опубликовать результаты своих опытов, в печати появилось сообщение М. Фарадея об открытии им электромагнитной индукции.

    М. Фарадей стремился использовать открытое им явление, чтобы получить новый источник электричества.

    Явление электромагнитной индукции было открыто Майлом Фарадеем в 1831 году. Еще за 10 лет до этого Фарадей думал о способе превратить магнетизм в электричество. Он считал, что магнитное поле и электрическое поле должны быть как-то связаны.

    Открытие электромагнитной индукции

    Например, с помощью электрического поля можно намагнитить железный предмет. Наверное, должна существовать возможность с помощью магнита получить электрический ток.

    Сначала Фарадей открыл явление электромагнитной индукции в неподвижных относительно друг друга проводниках. При возникновении в одной из них тока в другой катушке тоже индуцировался ток. Причем в дальнейшем он пропадал, и появлялся снова лишь при выключении питания одной катушки.

    Через некоторое время Фарадей на опытах доказал, что при перемещении катушки без тока в цепи относительно другой, на концы которой подается напряжение, в первой катушке тоже будет возникать электрический ток.

    Следующим опытом было введение в катушку магнита, и при этом тоже в ней появлялся ток. Данные опыты показаны на следующих рисунках.

    Фарадеем была сформулирована основная причина появления тока в замкнутом контуре. В замкнутом проводящем контуре ток возникает при изменении числа линий магнитной индукции, которые пронизывают этот контур.

    Чем больше будет это изменение, тем сильнее получится индукционный ток. Неважно, каким образом мы добьемся изменения числа линий магнитной индукции. Например, это можно сделать движением контура в неоднородном магнитном поле, как это происходило в опыте с магнитом или движением катушки. А можем, например, изменять силу тока в соседней с контуром катушке, при этом будет изменяться магнитное поле, создаваемое этой катушкой.

    Формулировка закона

    Подведем краткий итог. Явление электромагнитной индукции – это явление возникновения тока в замкнутом контуре, при изменении магнитного поля в котором находится этот контур.

    Для более точной формулировки закона электромагнитной индукции необходимо ввести величину, которая бы характеризовала магнитное поле – поток вектора магнитной индукции.

    Магнитный поток

    Вектор магнитной индукции обозначается буквой B. Он будет характеризовать магнитное поле в любой точке пространства. Теперь рассмотрим замкнутый контур, ограничивающий поверхность площадью S. Поместим его в однородное магнитное поле.

    Между вектором нормали к поверхности и вектором магнитной индукции будет некоторый угол а. Магнитный поток Ф через поверхность площадью S называется физическая величина, равная произведению модуля вектора магнитной индукции на площадь поверхности и косинус угла между вектором магнитной индукции и нормалью к контуру.

    Ф = B*S*cos(a).

    Произведение B*cos(a) является проекцией вектора В на нормаль n. Поэтому форму для магнитного потока можно переписать следующим образом:

    Единицей измерения магнитного потока является вебер. Обозначается 1 Вб. Магнитный поток в 1Вб создается магнитным полем с индукцией 1 Тл через поверхность площадь 1 м^2, которая расположена перпендикулярно вектору магнитной индукции.

    Вектор магнитной индукции \(~\vec B\) характеризует магнитное поле в каждой точке пространства. Введем еще одну величину, зависящую от значения вектора магнитной индукции не в одной точке, а во всех точках произвольно выбранной поверхности. Эту величину называют потоком вектора магнитной индукции, или магнитным потоком .

    Выделим в магнитном поле настолько малый элемент поверхности площадью ΔS , чтобы магнитную индукцию во всех его точках можно было считать одинаковой. Пусть \(~\vec n\) - нормаль к элементу, образующая угол α с направлением вектора магнитной индукции (рис. 1).

    Потоком вектора магнитной индукции через поверхность площадью ΔS называют величину, равную произведению модуля вектора магнитной индукции \(~\vec B\) на площадь ΔS и косинус угла α между векторами \(~\vec B\) и \(~\vec n\) (нормалью к поверхности):

    \(~\Delta \Phi = B \cdot \Delta S \cdot \cos \alpha\) .

    Произведение B ∙cos α = В n представляет собой проекцию вектора магнитной индукции на нормаль к элементу. Поэтому

    \(~\Delta \Phi = B_n \cdot \Delta S\) .

    Поток может быть как положительным, так и отрицательным в зависимости от значения угла α .

    Если магнитное поле однородно, то поток через плоскую поверхность площадью S равен:

    \(~\Phi = B \cdot S \cdot \cos \alpha\) .

    Поток магнитной индукции наглядно может быть истолкован как величина, пропорциональная числу линий вектора \(~\vec B\) , пронизывающих данную площадку поверхности.

    Вообще говоря, поверхность может быть замкнутой. В этом случае число линий индукции, входящих внутрь поверхности, равно числу линий, выходящих из нее (рис. 2). Если поверхность замкнута, то положительной нормалью к поверхности принято считать внешнюю нормаль.

    Линии магнитной индукции замкнуты, что означает равенство нулю потока магнитной индукции через замкнутую поверхность. (Выходящие из поверхности линии дают положительный поток, а входящие – отрицательный.) Это фундаментальное свойство магнитного поля связано с отсутствием магнитных зарядов. Если бы не было электрических зарядов, то и электрический поток через замкнутую поверхность был бы равен нулю.

    Электромагнитная индукция

    Открытие электромагнитной индукции

    В 1821 г. Майкл Фарадей записал в своем дневнике: «Превратить магнетизм в электричество». Через 10 лет эта задача была им решена.

    М. Фарадей был уверен в единой природе электрических и магнитных явлений, но долгое время взаимосвязь этих явлений обнаружить не удавалось. Трудно было додуматься до главного: только меняющееся во времени магнитное поле может возбудить электрический ток в неподвижной катушке или же сама катушка должна двигаться в магнитном поле.

    Открытие электромагнитной индукции, как назвал Фарадей это явление, было сделано 29 августа 1831 г. Вот краткое описание первого опыта, данное самим Фарадеем. «На широкую деревянную катушку была намотана медная проволока длиной в 203 фута (фут равен 304,8 мм), и между витками ее намотана проволока такой же длины, но изолированная от первой хлопчатобумажной нитью. Одна из этих спиралей была соединена с гальванометром, а другая - с сильной батареей, состоящей из 100 пар пластин... При замыкании цепи удалось заметить внезапное, но чрезвычайно слабое действие на гальванометр, и то же самое замечалось при прекращении тока. При непрерывном же прохождении тока через одну из спиралей не удавалось отметить ни действия на гальванометр, ни вообще какого-либо индукционного действия на другую спираль, не смотря на то что нагревание всей спирали, соединенной с батареей, и яркость искры, проскакивающей между углями, свидетельствовали о мощности батареи».

    Итак, первоначально была открыта индукция в неподвижных друг относительно друга проводниках при замыкании и размыкании цепи. Затем, ясно понимая, что сближение или удаление проводников с током должно приводить к тому же результату, что и замыкание и размыкание цепи, Фарадей с помощью опытов доказал, что ток возникает при перемещении катушек относительно друг друга (рис. 3).

    Знакомый с трудами Ампера, Фарадей понимал, что магнит - это совокупность маленьких токов, циркулирующих в молекулах. 17 октября, как зарегистрировано в его лабораторном журнале, был обнаружен индукционный ток в катушке во время вдвигания (или выдвигания) магнита (рис. 4).

    В течение одного месяца Фарадей опытным путем открыл все существенные особенности явления электромагнитной индукции. Оставалось только придать закону строгую количественную форму и полностью вскрыть физическую природу явления. Уже сам Фарадей уловил то общее, от чего зависит появление индукционного тока в опытах, которые внешне выглядят по-разному.

    В замкнутом проводящем контуре возникает ток при изменении числа линий магнитной индукции, пронизывающих поверхность, ограниченную этим контуром. Это явление называется электромагнитной индукцией.

    И чем быстрее меняется число линий магнитной индукции, тем больше возникающий ток. При этом причина изменения числа линий магнитной индукции совершенно безразлична. Это может быть и изменение числа линий магнитной индукции, пронизывающих неподвижный проводник вследствие изменения силы тока в соседней катушке, и изменение числа линий вследствие движения контура в неоднородном магнитном поле, густота линий которого меняется в пространстве (рис. 5).

    Правило Ленца

    Индукционный ток, возникший в проводнике, немедленно начинает взаимодействовать с породившим его током или магнитом. Если магнит (или катушку с током) приближать к замкнутому проводнику, то появляющийся индукционный ток своим магнитным полем обязательно отталкивает магнит (катушку). Для сближения магнита и катушки нужно совершить работу. При удалении магнита возникает притяжение. Это правило выполняется неукоснительно. Представьте себе, что дело обстояло бы иначе: вы подтолкнули магнит к катушке, и он сам собой устремился бы внутрь нее. При этом нарушился бы закон сохранения энергии. Ведь механическая энергия магнита увеличилась бы и одновременно возникал бы ток, что само по себе требует затраты энергии, ибо ток тоже может совершать работу. Индуцированный в якоре генератора электрический ток, взаимодействуя с магнитным полем статора, тормозит вращение якоря. Только поэтому для вращения якоря нужно совершать работу, тем большую, чем больше сила тока. За счет этой работы и возникает ин-дукционный ток. Интересно отметить, что если бы магнитное поле нашей планеты было очень большим и сильно неоднородным, то быстрые движения проводящих тел на ее поверхности и в атмосфере были бы невозможны из-за интенсивного взаимодействия индуцированного в теле тока с этим полем. Тела двигались бы как в плотной вязкой среде и при этом сильно разогревались бы. Ни самолеты, ни ракеты не могли бы летать. Человек не мог бы быстро двигать ни руками, ни ногами, так как человеческое тело - неплохой проводник.

    Если катушка, в которой наводится ток, неподвижна относительно соседней катушки с переменным током, как, например, у трансформатора, то и в этом случае направление индукционного тока диктуется законом сохранения энергии. Этот ток всегда направлен так, что созданное им магнитное поле стремится уменьшить изменения тока в первичной обмотке.

    Отталкивание или притяжение магнита катушкой зависит от направления индукционного тока в ней. Поэтому закон сохранения энергии позволяет сформулировать правило, определяющее направление индукционного тока. В чем состоит различие двух опытов: приближение магнита к катушке и его удаление? В первом случае магнитный поток (или число линий магнитной индукции, пронизывающих витки катушки) увеличивается (рис. 6, а), а во втором случае - уменьшается (рис. 6, б). Причем в первом случае линии индукции В ’ магнитного поля, созданного возникшим в катушке индукционным током, выходят из верхнего конца катушки, так как катушка отталкивает магнит, а во втором случае, наоборот, входят в этот конец. Эти линии магнитной индукции на рисунке 6 изображены штрихом.

    Рис. 6

    Теперь мы подошли к главному: при увеличении магнитного потока через витки катушки индукционный ток имеет такое направление, что создаваемое им магнитное поле препятствует нарастанию магнитного потока через витки катушки. Ведь вектор индукции \(~\vec B"\) этого поля направлен против вектора индукции \(~\vec B\) поля, изменение которого порождает электрический ток. Если же магнитный поток через катушку ослабевает, то индукционный ток создает магнитное поле с индукцией \(~\vec B"\) , увеличивающее магнитный поток через витки катушки.

    В этом состоит сущность общего правила определения направления индукционного тока, которое применимо во всех случаях. Это правило было установлено русским физиком Э. X. Ленцем (1804-1865).

    Согласно правилу Ленца

    возникающий в замкнутом контуре индукционный ток имеет такое на-правление, что созданный им магнитный поток через поверхность, ограниченную контуром, стремится препятствовать тому изменению потока, которое порождает данный ток.

    индукционный ток имеет такое направление, что препятствует причине его вызывающей.

    В случае сверхпроводников компенсация изменения внешнего магнитного потока будет полной. Поток магнитной индукции через поверхность, ограниченную сверхпроводящим контуром, вообще не меняется со временем ни при каких условиях.

    Закон электромагнитной индукции

    Опыты Фарадея показали, что сила индукционного тока I i в проводящем контуре пропорциональна скорости изменения числа линий магнитной индукции \(~\vec B\) , пронизывающих поверхность, ограниченную этим контуром. Более точно это утверждение можно сформулировать, используя понятие магнитного потока.

    Магнитный поток наглядно истолковывается как число линий магнитной индукции, пронизывающих поверхность площадью S . Поэтому скорость изменения этого числа есть не что иное, как скорость изменения магнитного потока. Если за малое время Δt магнитный поток меняется на ΔФ , то скорость изменения магнитного потока равна \(~\frac{\Delta \Phi}{\Delta t}\) .

    Поэтому утверждение, которое вытекает непосредственно из опыта, можно сформулировать так:

    сила индукционного тока пропорциональна скорости изменения магнитного потока через поверхность, ограниченную контуром:

    \(~I_i \sim \frac{\Delta \Phi}{\Delta t}\) .

    Известно, что в цепи возникает электрический ток в том случае, когда на свободные заряды действуют сторонние силы. Работу этих сил при перемещении единичного положительного заряда вдоль замкнутого контура называют электродвижущей силой. Следовательно, при изменении магнитного потока через поверхность, ограниченную контуром, в нем появляются сторонние силы, действие которых характеризуется ЭДС, называемой ЭДС индукции. Обозначим ее буквой E i .

    Закон электромагнитной индукции формулируется именно для ЭДС, а не для силы тока. При такой формулировке закон выражает сущность явления, не зависящую от свойств проводников, в которых возникает индукционный ток.

    Согласно закону электромагнитной индукции (ЭМИ)

    ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром:

    \(~|E_i| = |\frac{\Delta \Phi}{\Delta t}|\) .

    Как в законе электромагнитной индукции учесть направление индукционного тока (или знак ЭДС индукции) в соответствии с правилом Ленца?

    На рисунке 7 изображен замкнутый контур. Будем считать положительным направление обхода контура против часовой стрелки. Нормаль к контуру \(~\vec n\) образует правый винт с направлением обхода. Знак ЭДС, т. е. удельной работы, зависит от направления сторонних сил по отношению к направлению обхода контура. Если эти направления совпадают, то E i > 0 и соответственно I i > 0. В противном случае ЭДС и сила тока отрицательны.

    Пусть магнитная индукция \(~\vec B\) внешнего магнитного поля направлена вдоль нормали к контуру и возрастает со временем. Тогда Ф > 0 и \(~\frac{\Delta \Phi}{\Delta t}\) > 0. Согласно правилу Ленца индукционный ток создает магнитный поток Ф ’ < 0. Линии индукции B ’ магнитного поля индукционного тока изображены на рисунке 7 штрихом. Следовательно, индукционный ток I i направлен по часовой стрелке (против положительного направления обхода) и ЭДС индукции отрицательна. Поэтому в законе электромагнитной индукции должен стоять знак минус:

    \(~E_i = - \frac{\Delta \Phi}{\Delta t}\) .

    В Международной системе единиц закон электромагнитной индукции используют для установления единицы магнитного потока. Эту единицу называют вебером (Вб).

    Так как ЭДС индукции E i выражают в вольтах, а время в секундах, то из закона ЭМИ вебер можно определить следующим образом:

    магнитный поток через поверхность, ограниченную замкнутым контуром, равен 1 Вб, если при равномерном убывании этого потока до нуля за 1 с в контуре возникает ЭДС индукции равная 1 В:

    1 Вб = 1 В ∙ 1 с.

    Вихревое поле

    Изменяясь во времени, магнитное поле порождает электрическое поле . К этому выводу впервые пришел Дж. Максвелл.

    Теперь явление электромагнитной индукции предстает перед нами в новом свете. Главное в нем - это процесс порождения магнитным полем поля электрического. При этом наличие проводящего контура, например катушки, не меняет существа дела. Проводник с запасом свободных электронов (или других частиц) лишь помогает обнаружить возникающее электрическое поле. Поле приводит в движение электроны в проводнике и тем самым обнаруживает себя. Сущность явления электромагнитной индукции в неподвижном проводнике состоит не столько в появлении индукционного тока, сколько в возникновении электрического поля, которое приводит в движение электрические заряды.

    Электрическое поле, возникающее при изменении магнитного поля, имеет совсем другую структуру, чем электростатическое. Оно не связано непосредственно с электрическими зарядами, и его линии напряженности не могут на них начинаться и кончаться. Они вообще нигде не начинаются и не кончаются, а представляют собой замкнутые линии, подобные линиям индукции магнитного поля. Это так называемое вихревое электрическое поле . Может возникнуть вопрос: а почему, собственно, это поле называется электрическим? Ведь оно имеет другое происхождение и другую конфигурацию, чем статическое электрическое поле. Ответ прост: вихревое поле действует на заряд q точно так же, как и электростатическое, а это мы считали и считаем главным свойством поля. Сила, действующая на заряд, по-прежнему равна \(~\vec F = q \vec E\) , где \(~\vec E\) - напряженность вихревого поля. Если магнитный поток создается однородным магнитным полем, сконцентрированным в длинной узкой цилиндрической трубке радиусом r 0 (рис. 8), то из соображений симметрии очевидно, что линии напряженности электрического поля лежат в плоскостях, перпендикулярных линиям \(~\vec B\) , и представляют собой окружности. В соответствии с правилом Ленца при возрастании магнитной индукции \(~\left (\frac{\Delta B}{\Delta t} > 0 \right)\) линии напряженности \(~\vec E\) образуют левый винт с направлением магнитной индукции \(~\vec B\) .

    В отличие от статического или стационарного электрического поля работа вихревого поля на замкнутом пути не равна нулю. Ведь при перемещении заряда вдоль замкнутой линии напряженности электрического поля работа на всех участках пути имеет один и тот же знак, так как сила и перемещение совпадают по направлению. Вихревое электрическое поле, так же как и магнитное поле, не потенциальное.

    Работа вихревого электрического поля по перемещению единичного положительного заряда вдоль замкнутого неподвижного проводника численно равна ЭДС индукции в этом проводнике.

    Итак, переменное магнитное поле порождает вихревое электрическое поле. Но не кажется ли вам, что одного утверждения здесь недостаточно? Хочется знать, каков же механизм данного процесса. Нельзя ли разъяснить, как эта связь полей осуществляется в природе? И вот тут-то ваша естественная любознательность не может быть удовлетворена. Никакого механизма здесь просто нет. Закон электромагнитной индукции - это фундаментальный закон природы, значит, основной, первичный. Действием его можно объяснить многие явления, но сам он остается необъяснимым просто по той причине, что нет более глубоких законов, из которых бы он вытекал в виде следствия. Во всяком случае сейчас такие законы неизвестны. Таковыми являются все основные законы: закон тяготения, закон Кулона и т.д.

    Мы, конечно, вольны ставить перед природой любые вопросы, но не все они имеют смысл. Так, например, можно и нужно исследовать причины различных явлений, но пытаться выяснить, почему вообще существует причинность, - бесполезно. Такова природа вещей, таков мир, в котором мы живем.

    Литература

    1. Жилко В.В. Физика: Учеб. пособие для 10-го кл. общеобразоват. шк. с рус. яз. обучения / В.В. Жилко, А.В. Лавриненко, Л.Г. Маркович. – Мн.: Нар. асвета, 2001. – 319 с.
    2. Мякишев, Г.Я. Физика: Электродинамика. 10-11 кл. : учеб. для углубленного изучения физики / Г.Я. Мякишев, А.3. Синяков, В.А. Слободсков. – М.: Дрофа, 2005. – 476 с.