Что такое шар геометрическая фигура. Шар как геометрическая фигура

Шар – это тело, состоящее из всех точек пространства, которые находятся на расстоянии, не большем данного от данной точки. Эта точка называется центром шара, а данное расстояние – радиусом шара. Граница шара называется шаровой поверхностью или сферой. Точками сферы являются все точки шара, которые удалены от центра на расстояние, равное радиусу. Любой отрезок, который соединяет центр шара с точкой шаровой поверхности, тоже называется радиусом. Проходящий через центр шара отрезок, который соединяет две точки шаровой поверхности, называется диаметром. Концы любого диаметра называются диаметрально противоположными точками шара.

Шар является телом вращения, так же как конус и цилиндр. Шар получается при вращении полукруга вокруг его диаметра как оси.

Площадь поверхности шара можно найти по формулам:

где r – радиус шара, d – диаметр шара.

Объём шара находится по формуле:

V = 4 / 3 πr 3 ,

где r – радиус шара.

Теорема. Всякое сечение шара плоскостью есть круг. Центр этого круга есть основание перпендикуляра, опущенного из центра шара на секущую плоскость.

Исходя из данной теоремы, если шар с центром O и радиусом R пересечён плоскостью α, то в сечении получается круг радиуса r с центром K. Радиус сечения шара плоскостью можно найти по формуле

Из формулы видно, что плоскости, равноудалённые от центра, пересекают шар по равным кругам. Радиус сечения тем больше, чем ближе секущая плоскости к центру шара, то есть чем меньше расстояние ОК. Наибольший радиус имеет сечение плоскостью, проходящей через центр шара. Радиус этого круга равен радиусу шара.

Плоскость, проходящая через центр шара, называется диаметральной плоскостью. Сечение шара диаметральной плоскостью, называется большим кругом, а сечение сферы – большим кругом, а сечение сферы – большой окружностью.

Теорема. Любая диаметральная плоскость шара является его плоскостью симметрии. Центр шара является его центром симметрии.

Плоскость, которая и проходит через точку А шаровой поверхности и перпендикулярна радиусу, проведённому в точку А, называется касательной плоскостью. Точка А называется точкой касания.

Теорема. Касательная плоскость имеет с шаром только одну общую точку – точку касания.

Прямая, которая проходит через точку А шаровой поверхности перпендикулярно к радиусу, проведённому в эту точку, называется касательной.

Теорема. Через любую точку шаровой поверхности проходит бесконечно много касательных, причём все они лежат в касательной плоскости шара.

Шаровым сегментом называется часть шара, отсекаемая от него плоскостью. Круг ABC – основание шарового сегмента. Отрезок MN перпендикуляра, проведенного из центра N круга ABC до пересечения со сферической поверхностью, – высота шарового сегмента. Точка M – вершина шарового сегмента.

Площадь поверхности шарового сегмента можно вычислить по формуле:

Объём шарового сегмента можно найти по формуле:

V = πh 2 (R – 1/3h),

где R – радиус большого круга, h – высота шарового сегмента.

Шаровой сектор получается из шарового сегмента и конуса, следующим образом. Если шаровой сегмент меньше полушара, то шаровой сегмент дополняется конусом, у которого вершина в центре шара, а основанием является основание сегмента. Если же сегмент больше полушара, то указанный конус из него удаляется.

Шаровой сектор – это часть шара, ограниченная кривой поверхностью сферического сегмента (на нашем рисунке – это AMCB) и конической поверхностью (на рисунке – это OABC), основанием которой служит основание сегмента (ABC), а вершиной – центр шара O.

Объем шарового сектора находится по формуле:

V = 2/3 πR 2 H.

Шаровый слой – это часть шара, заключённая между двумя параллельными плоскостями (на рисунке плоскостями ABC и DEF), пересекающими сферическую поверхность. Кривая поверхность шарового слоя называется шаровым поясом (зоной). Круги ABC и DEF – основания шарового пояса. Расстояние NK между основаниями шарового пояса – его высота.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Шар ( сфера )

Сферическая поверхность. Шар (сфера). Сечения шара: круги.

Теорема Архимеда. Части шара:шаровой (сферический) сегмент,

шаровой слой, шаровой пояс, шаровой сектор.

Сферическая поверхность – это геометрическое место точек ( т.е. множе ство всех точек ) в пространстве, равноудалённых от одной точки O, которая называется центром сферической поверхности ( рис.90 ). Радиус AOи диаметр AB определяются так же, как и в окружности.

Шар (сфера ) - это тело, ограниченное сферической поверхностью. Можно получить шар, вращая полукруг (или круг ) вокруг диаметра. Все плоские сечения шара – круги (рис.90 ). Наибольший круг лежит в сечении, проходящем через центр шара, и называется большим кругом . Его радиус равен радиусу шара. Любые два больших круга пересекаются по диаметру шара (AB, рис.91 ).Этот диаметр является и диаметром пересекающихся больших кругов. Через две точки сферической поверхности, расположенные на концах одного диаметра (A и B , рис.91 ), можно провести бесчисленное множество больших кругов. Например, через полюса Земли можно провести бесконечное число меридианов.

Объём шара в полтора раза меньше объёма описанного вокруг него цилиндра (рис.92 ), а поверхность шара в полтора раза меньше полной поверхности того же цилиндра ( теорема Архимеда ):

Здесь S шара и V шара - соответственно поверхность и объём шара;

S цил и V цил - полная поверхность и объём описанного цилиндра.

Части шара. Часть шара (сферы ), отсекаемая от него какой-либо плоскостью (ABC, рис.93 ), называется шаровым (сферическим ) сегментом . Круг ABC называется основанием шарового сегмента. Отрезок MN перпендикуляра, проведенного из центра N круга ABC до пересечения со сферической поверхностью, называется высотой шарового сегмента. Точка M называется вершиной шарового сегмента.

Часть сферы, заключённая между двумя параллельными плоскостями ABC и DEF, пересекающими сферическую поверхность ( рис.93 ), называется шаровым слоем ; кривая поверхность шарового слоя называется шаровым поясом ( зоной ). Круги ABC и DEF основания шарового пояса. Расстояние NK между основаниями шарового пояса – его высота . Часть шара, ограниченная кривой поверхностью сферического сегмента (AMCB, рис.93) и конической поверхностью OABC, основанием которой служит основание сегмента (ABC), а вершиной – центр шара O, называется шаровым сектором .

Для получения грамотного ответа на вынесенный в заголовок вопрос читателю статьи потребуется хорошенько напрячь свои способности к абстрактному мышлению и как следует углубиться в определённые разделы математики, что ему доводилось изучать в школе. А для стимуляции воображения нелишним будет напомнить, что «Образование есть то, что остаётся после того, когда забывается всё, чему нас учили» (авторство фразы приписывается А.Эйнштейну).

Небольшое погружение в один из разделов математики

Для начала потребуется вспомнить о существовании науки геоме́трии (в несколько вольном переводе с греческого это слово означает «землемеренье») — обособленном разделе математики, специализирующемся на изучении пространственных структур, их отношений между собой и различных возникающих из этого обобщений. Важно, что несмотря на подобное «приземлённое» происхождения названия эта наука оперирует сугубо абстрактными понятиями, которые в привычном нам мире не существуют в прямом физическом воплощении.

Одно из таких базовых понятий — это геометрическая точка . Напрягите своё воображение: в отличие от «точки карандашом», «точки от булавки» и так далее эта точка представляет из себя полностью абстрактный объект в воображаемом пространстве без каких-либо измеримых характеристик типа «толщины», «цвета» и так далее (математики любят при этом произносить словосочетание «нульмерный объект»). В принципе, всё остальное в геометрии будет далее определяться исходя именно из этой абстракции.

Следующее нужно для дальнейших рассуждений понятие — это «ритуальная» математическая фраза «геометри́ческое ме́сто то́чек» (ГМТ). C её помощью описывается некоторое множество (совокупность) точек, подпадающих под определённое отношение (свойство) — таким образом задаётся «геометрическая фигура». Пример: сфе́ра (от древнегреческого σφαῖρα, изначально обозначающего мяч/шар) — это геометрическое место таких точек пространства, которое можно описать как равноудалённое (находящееся на строго одном расстоянии) от некоторой заданной точки, обычно называемой «центром сферы».

Расстояние же от центра сферы до этого ГМТ принято называть «радиусом сферы». Во время всех этих манипуляций важно продолжать помнить, что сфера — понятие более эфемерное, чем даже всем привычный и знакомый мыльный пузырь: у любого мыльного пузыря всё-таки есть вполне ощутимая стенка из водно-мыльной плёнки микроскопической толщины, которую можно физически измерить (и даже проткнуть), а у сферы — нет!

Теперь обратимся к определению шара: под шаром понимается совокупность всех таких точек пространства, что находится от определённой точки (центра шара) на расстоянии, не большем заданного (радиуса шара). Иначе говоря, шар является «геометрическим телом» — тем, что согласно первичному определению Евклида «имеет длину, ширину и глубину» (в современных учебниках это определение менее наглядно: «часть пространства, ограниченная своей образуемой формой»).

Попутно отметим, что использованные здесь способы задания сферы и шара через центр и радиус — не единственные: например, задание сферы/шара в пространстве можно выполнить посредством вращения окружности, круга и т.д. (глубоко заинтересовавшимся этим вопросом настоятельно рекомендуется ознакомиться с отдельным разделом геометрии под названием «Фигуры и тела вращения», поскольку это часто применяемый способ задания самых различных геометрических фигур и тел в пространстве).

Таким образом, и в случае сферы, и в случае шара приходится иметь дело с определённым образом заданным геометрическим местом точек (то есть геометрической фигурой), однако лишь в случае шара можно говорить о геометрическом теле. Любопытно отметить, что строго говоря сферу из шара можно «вычесть»: в этом случае математики говорят об «открытом шаре». Однако «по умолчанию» имеет место «замкнутый шар», где сфера является его естественной границей и принадлежащей ему частью.

Резюме

И шар, и сфера являются абстрактными геометрическими объектами (геометрическими фигурами), задаваемыми через некоторое геометрическое место точек пространства — например, с помощью понятия центра шара/сферы и радиуса шара/сферы. Однако только шар является полноценным геометрическим телом, поскольку включает в себя не только описание ограничивающей его поверхности, но и всей той части пространства, что в себя эта поверхность заключает. С такой точки зрения сфера — лишь внешняя абстрактная граница (поверхность) задаваемого в пространстве шара.

‌‌‌V‌ районная научно-практическая конференция исследовательских, проектных и творческих работ учащихся «Первые шаги в науке»

Исследовательская работа по теме:

«Сфера и шар – обычные геометрические тела».

Выполнил: ученик 9 класса МБОУ

«Кочетовская средняя общеобразовательная школа» Романов Дима.

Руководитель: учитель математики и физики Тремаскина В.С.

Введение ___________________________________________________________3

1. История изучения геометрических тел: шар, сфера_______________________3

2. Сфера и шар.

2.1. Понятие сферы и шара___________________________________________3-4

2.2. Уравнение сферы________________________________________________4

2.3. Взаимное расположение сферы и плоскости_________________________4-6

2.4. Касательная плоскость к сфере____________________________________6-7

2.5. Площадь сферы и объём шара____________________________________ 7

2.6. Получение сферы_______________________________________________ 7-8

2.7. Нахождение сферы и шара в природе______________________________ 9-13

2.8.Сфера и шар в повседневной жизни_________________________________14-15

2.9.Применение сферы и шара в архитектуре____________________________16-22

2.10. Применение сферы и шара в геодезии______________________________23

2.11Применение сферы и шара в астрономии и географии_________________24

2.12. Сфера и шар в искусстве_________________________________________25

Заключение___________________________________________________________25

Литература___________________________________________________________26

Актуальность выбранной темы.

На протяжении веков человечество не переставало пополнять свои научные знания в той или иной области наук. Множество ученых геометров, да и простых людей, интересовались такой фигурой как шар и его “оболочкой”, носящей название сфера. Многие реальные объекты в физике, астрономии, биологии и других естественных науках имеют форму шара. Поэтому вопросам изучения свойств шара отводилась в различные исторические эпохи и отводится в наше время значительная роль.

Цель исследования: изучить геометрические тела шар и сферу, рассмотреть их применение в разных областях науки, в повседневной жизни, в природе, создать презентацию «Сфера и шар – обычные геометрические тела».

Задачи:

1. Собрать материал о шаре и сфере используя различные источники информации, в том числе Интернет-ресурсы.

2. Систематизировать материал о шаре и сфере.

4. Создать презентацию«Сфера и шар – обычные геометрические тела ».

5. Представить работу на уроке геометрии при изучении темы «Сфера и шар».

Объект исследования : сфера и шар

Предмет исследования : элементы и свойства сферы и шара

Гипотеза: Шары нам нужны для того что бы делать наш мир более разнообразным и объёмным.

Методы: частично-поисковый, исследовательский, сравнительный анализ, синтез, практический.

Результат исследования: полученные знания нужны не только астрономам, штурманам морских кораблей, самолетов, космических кораблей, которые по звездам определяют свои координаты, но и строителям шахт, метрополитенов, тоннелей, архитекторам, а также при геодезических съёмках больших территорий поверхности Земли, когда становится необходимым учитывать её шарообразность, в повседневной жизни.

Научная новизна: теоретический материал представлен в форме доступной для понимания учащимися старших классов.

Практическая значимость: данный материал может использоваться в качестве основы для элективного курса в классах физико-математического профиля, на уроках при изучении тем «Сфера и шар».

Введение

На протяжении многих веков человечество не переставало пополнять свои научные знания в той или иной области науки. Стереометрия, как наука о фигурах в пространстве, неотъемлемо связана со многими из научных дисциплин. К таким дисциплинам относятся: математика, физика, информатика и программирование, а также химия и биология. В последних стоит проблема изучения микромира, который представляет собой сложнейшую комбинацию различных частиц в пространстве относительно друг друга. В архитектуре постоянно используются теоремы и следствия из стереометрии.

Множество учёных геометров, да и простых людей, интересовались такой фигурой как шар и его «оболочкой», носящей название сфера. Удивительно, но шар является единственным телом, обладающим большей площадью поверхности при объёме, равном объёму других сравниваемых тел, таких как куб, призма или прочие всевозможные многогранники. С шарами мы имеем дело ежедневно. К примеру, почти каждый человек пользуется шариковый ручкой в конец стержня которой вмонтирован металлический шар, вращающийся под действием сил трения между ним и бумагой и в процессе поворота на своей поверхности шар «выносит» очередную порцию чернил. В автомобильной промышленности изготавливаются шаровые опоры, являющиеся очень важной деталью в автомобиле и обеспечивающей правильный поворот колёс и устойчивость машины на дороге. Элементы машин, самолётов, ракет, мотоциклов, снарядов, плавательных судов, подвергающиеся постоянным воздействиям воды или воздуха, преимущественно имеют какие либо сферические поверхности, называемые обтекателями.

История изучения геометрических тел: шар, сфера

Шаром принято называть тело, ограниченное сферой, т.е. шар и сфера – это разные геометрические тела. Однако оба слова « шар» и « сфера» происходят от одного и того же греческого слова « сфайра» - мяч. При этом слово « шар» образовалось от перехода согласных сф в ш.

В XI книге «Начал» Евклид определяет шар как фигуру, описанную вращающимся около неподвижного диаметра полукругом. В древности сфера была в большом почёте. Астрономические наблюдения над небесным сводом неизменно вызывали образ сферы.

Сфера всегда широко применялась в различных областях науки и техники.

2.1. Понятие сферы и шара

Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии от данной точки.

Тело, ограниченное сферой, называется шаром.

Данная точка называется центром сферы, а данное расстояние – радиусом сферы.

Отрезок, соединяющий две точки сферы и проходящий

через ее центр, называется диаметром сферы.

Центр, радиус, диаметр сферы называется также центром, радиусом и диаметром шара.

2.2. Уравнение сферы

    Зададим прямоугольную систему координат О xyz

    Построим сферу c центром в точке C (x 0;y 0;z 0)

    и радиусом R

МС = (x – x 0 ) 2 + (y – y 0 ) 2 + (z – z 0 ) 2

    МС = R , или МС2 = R2

следовательно уравнение

сферы имеет вид:

(x - x 0 ) 2 + (y - y 0 ) 2 + (z - z 0 ) 2 = R 2

2.3. Взаимное расположение сферы и плоскости

Дано:

Сфера радиуса R с центром С (х 0 ; у 0 ; z 0), точка М (х; у; z ) лежит на сфере.

Чему равно расстояние МС?

Т. к. МС = R , то


M


R

с

    С С СС


Дано: плоскость α , сфера (С; R ),

d - расстояние от центра С до плоскости α .

Введем систему координат, где точка С (x 0 ;y 0 ;z 0). Составим уравнения сферы и плоскости α .

z

П
усть точка С лежит на оси z . Тогда ее координаты (0; 0; d ).

Уравнение сферы:

Уравнение плоскости α : z = 0

Исследуем систему уравнений:


z = 0


Тогда

    В зависимости от соотношения d и R возможны 3 случая…

1
) d < R .

Тогда

уравнение окружности (О; r )

Сечение сферы плоскостью – окружность

2
) d = R .

Тогда

Верно при

х = 0 и у = 0

Сфера и плоскость имеют одну общую точку.

3
) d > R .

Тогда

не имеет решений.

Сфера и плоскость не имеют общих точек.

2.4. Касательная плоскость к сфере


Плоскость, имеющая со сферой только одну общую точку, называется касательной плоскостью к сфере, а их общая точка называется точкой касания плоскости и сферы.

Теорема. Радиус сферы, проведенный в точку касания сферы и плоскости, перпендикулярен к касательной плоскости.

Дано: сфера с центром О и радиусом R , α - касательная к сфере в точке А плоскость.

Доказать: OA а .

Доказательство: Пусть OA не перпендикулярна плоскости а , тогда OA является наклонной к плоскости, значит, расстояние от центра до плоскости d < R . Т.е. сфера должна пересекаться с плоскостью по окружности, но это не удовлетворяет условию теоремы. Значит, OA а .

Докажем обратную теорему.

Если радиус сферы перпендикулярен к плоскости, проходящей через его конец, лежащий на сфере, то эта плоскость является касательной к сфере.

Дано: сфера с центром О и радиусом OA , а, OA а .

Доказать: а – касательная плоскость.

Доказательство: Т.к. OA а , то расстояние от центра сферы до плоскости равно радиусу. Значит, сфера и плоскость имеют одну общую точку. По определению, плоскость является касательной к сфере.

2.5. Площадь сферы и объём шара

и шара радиуса определяются формулами:

Доказательство

Возьмём четверть круга радиуса R с центром в точке . Уравнение окружности этого круга: , откуда .

Функция непрерывная, возрастающая, неотрицательная. При вращении четверти круга вокруг оси Ox образуется полушар, следовательно:

Откуда Ч. т. д.

Доказательство

Ч. т. д.

Часть шара, [ ] осекаемая от него какой-нибудь плоскостью, называется шаровым или сферическим сегментом. Основанием шарового сегмента называется кругABCD . Высотой шарового сегмента называется отрезок NM , т.е. длина перпендикуляра, восстановленного из центраN основания до пересечения с поверхностью шара. ТочкаM называется вершиной шарового сегмента.

Объем шарового сегмента выражается формулой:

V = π h 2 ( R 1/3 h)

Шаровой слой - это часть шара [ ], заключенная между двумя секущими параллельными плоскостями. Шаровой пояс или Шаровая зона - это кривая поверхность шарового слоя. Круги ABC и DEF это основания шарового пояса. Расстояние между основаниямиON - это высота шарового слоя.

Объем шарового слоя выражается формулой:

V = 1/6 π h 3 + 1/2 π( r 1 2 + r 2 2 ) h

Шаровой сектор - это часть шара [ ], ограниченная кривой поверхностью шарового сегмента и конической поверхностью основанием которой служит основание сегмента, а вершиной - центр шара.

Объем шарового сектора равен , основание которой имеет ту же площадь, что и вырезаемая сектором часть шаровой поверхности, а высота равна радиусу

V = 1/3 R S = 2/3 π R 2 h


2.6. Получение сферы

Сферу можно получить вращением полуокружности АСВ вокруг диаметра АВ

2.7. Нахождение сферы и шара в природе

Загадки природы - Шары-послания. Эти загадочные каменные образования идеально круглой формы были обнаружены в конце 1940-х годов в джунглях центрально американской Республики Коста-Рика. Шары имеют размеры от 10 см до 3-4 метров в диаметре. При аэросъемке выяснилось, что они разбросаны по поверхности земли не случайно, а составляют геометрические фигуры. Возможно даже, что шары не разбросаны, а разложены в виде огромной звездной карты; каждый шар - это звезда с соответствующим описанием.

Среди гипотез происхождения шаров есть только экзотические версии: от пришельцев до скульпторов Атлантиды. Есть версия и о том, что шары вырезали (в расчете на будущие дивиденды от туризма) скучающие нацистские мигранты, наводнившие Латинскую Америку после краха «третьего рейха». Естественными причинами объяснить обилие шаров и странные рисунки на них не удалось. В Казахстане при разработке песчаного карьера на достаточно большой глубине также были обнаружены несколько крупных экземпляров таких валунов… Об этой находке сообщала комиссия «Феномен»; увы, фотографий находок не сохранилось.

Хрустальный шарик. Макросъёмка. На ветке какого-то дерева лежит шар из стекла, в нём отражается окружающая его природа. Очень симпатичные жёлтые цветочки и зелёная сочная трава.


Светящиеся шары

на фото в местах силы - результат распада урана или плазмоидная форма жизни?

Храм Гроба Господня и другие места Израиля

И
нтересное природное явление
на берегу мичиганского озера сформировались тысячи правильных ледяных шаров

Морские водоросли в виде необычных шаров

Странные шары появились на побережье Хэмптона, что на восточном побережье США, в июне 2002 года. Приливная волна стала выносить несметное число таких зеленоватых шаров - мягких, отдаленно напоминающих губку и размером с мячик для тенниса или гольфа. На расстоянии примерно 300 метров или больше весь песчаный пляж буквально был усеян такими шарами. Тут же начались споры- что это и откуда? В дебаты оказались вовлеченными и биологи маринисты, и отдыхающие на пляже, и случайные прохожие. Прежде никто не видел здесь ничего подобного.


Природа боится симметрии, природа не знает идеальных геометрических фигур. Зато человек может заставить природу приобрести эти чуждые ей формы. Наглядный пример тому - творчество корейского художника Lee Jae-Hyo, который создает из стволов деревьев идеальные сферы



Т

ысячи небольших фиолетовых шариков странным образом оказались в центре пустыни в штате Аризона, США. Жители города Тусон Джеральдина Варгас и ее муж обнаружили необъяснимое скопление непонятных шаров пару недель назад во время прогулки по окрестностям. "Мы фотографировали природу пустыни, когда натолкнулись на это странное место... не понимаю, как мы сразу его не заметили? - рассказала Джеральдина журналистам. – Оно просто искрилось на солнце". Фотографы отправили фото со странными объектами своей знакомой зоологу, но она не смогла сказать, что же это такое, у нее даже не было никаких предположений на этот счет.

Шары из минералов.


Аметист.Бразилия.

Горный хрусталь.Южный.Челяб.обл.Продан.

Амазонит.Кольский п-ов.Продан.


2.8 Сфера и шар в повседневной жизни

Н
а геометрический шар похожи глобус, футбольный мяч, новогодние игрушки.






Шар из пенопласта своими руками

Зорбинг (zorbing) – это один из самых модных экстремальных развлечений на сегодняшний день. Зорбинг позволит вам испытать новые, необычно яркие и мощные ощущения и встряхнуться от обыденности повседневной жизни.


Что такое шар Зорб

Зорб (ZORB) представляет из себя прозрачную сферу (шар) диаметром 3,2 метра внутри которой находится сфера диаметром 1,8 метра, в которой находится зорбонавт (пассажир зорба ). Пространство между этими сферами наполняется воздухом, давлением которого сферы распираются между собой, а стропами, наоборот, удерживаются. Такая система очень хорошо амортизирует, сглаживает неровности трассы и делает катание безопасным.

2.9.Применение сферы и шара в архитектуре


Такой дом называется ВИГВАМ . Такие дома строят ИНДЕЙЦЫ .

Шары и полусферы из нержавеющей стали




Фонтан "Вращающийся шар " в Санкт-

Петербурге -

Современные дома


А если дом не просто на дереве, а ещё и в форме шара.


Это поселок из самых настоящих круглых домов .


С
овременные круглые дома





Монреальская Биосфера - выставочный павильон США на Экспо-67 в Канаде,

созданная архитектором Ричардом Фуллером.



Отель в виде прозрачных шаров

В
о французском городе Рубе (Roubaix) в одном из парков открыли портативные гостиничные номера Hotel Bolha. Сделали это специально для людей, которые даже в центре городских джунглей желают побыть ближе к природе. Концепцию пузыря придумал дизайнер Пьер Стефан Дюма. Такая продвинутая конструкция была создана с целью временного присоединения постояльцев к неизведанному. Ведь не многие могут себе позволить поспать под круглым потолком.


Платье из шаров.

Дачный офис Скоро весна (а там и лето) и многие начнут ездить на дачу отдыхать.
Но иногда на даче нужно поработать (чтоб тебя!). Нет места где уединится?
Можно вот в таком вот небольшом шарообразном сооружение «Archipod»:


ЭНЕРГОЭФФЕКТИВНОСТЬ в архитектуре . Умный Дом - молекула.

В парке науки и техники La Vilette, построенном на месте скотобойни на восточной окраине Парижа, бросается в глаза гигантский шар, в зеркальной поверхности которого отражается парижское небо и окружающий пейзаж. На сегодняшний день это здание считается самым совершенным в мире сооружением сферической формы. Парижане называют его «Жеод» (Gеode). Это – панорамный

кинотеатр с самым большим в Европе экраном . дом-шар зеркало


Такие шары из ниток можно просто подвесить к веткам дерева, если ваш праздник проходит на природе, или к потолку. А также ими можно оформить банкетный стол, дополнив композицию свечами и цветами.


2.10. Применение сферы и шара в геодезии.

Картографические проекции

отображения всей поверхности земного эллипсоида (См. ) или какую-либо её части на плоскость, получаемые в основном с целью построения карты.

Масштаб. К. п. строятся в определённом масштабе. Уменьшая мысленно земной эллипсоид в М раз, например в 10 000 000 раз, получают его геометрическую модель - , изображение которого уже в натуральную величину на плоскости даёт карту поверхности этого эллипсоида. Величина 1: М (в примере 1: 10 000 000) определяет главный, или общий, масштаб карты. Т. к. поверхности эллипсоида и шара не могут быть развёрнуты на плоскость без разрывов и складок (они не принадлежат к классу развёртывающихся поверхностей (См. )), любой К. п. присущи искажения длин линий, углов и т.п., свойственные всякой карте. Основной характеристикой К. п. в любой её точке является частный масштаб μ. Это - величина, обратная отношению бесконечно малого отрезка ds на земном эллипсоиде к его изображению на плоскости: μ min ≤ μ ≤ μ max , и равенство здесь возможно лишь в отдельных точках или вдоль некоторых линий на карте. Т. о., главный масштаб карты характеризует её только в общих чертах, в некотором осреднённом виде. Отношение μ/М называют относительным масштабом, или увеличением длины, разность М = 1.

1. Сети сферических координатных линий.


2.11. Применение сферы и шара в астрономии и географии.

Сфера и шар, так же как окружность и круг, рассматривали еще в глубокой древности. Открытие шарообразности Земли, появление представлений о небесной сфере дали толчок к развитию специальной науки – СФЕРИКИ, изучающей расположенные на сфере фигуры.

Осуществляя кругосветные путешествия, мореплаватели заметили, что при возвращении в то же место наблюдается потеря или выигрыш целых суток, что было бы совершенно невозможно, если бы Земля имела форму диска.

Итак, доказательствами шарообразности Земли в настоящее время служат:

    Всегда кругообразная фигура горизонта в океане и в открытых низменностях или плоскогорьях;

    Кругосветные путешествия.

    Постепенное приближение или удаление предметов;

И
зучая различные географические карты, мы обнаружили, что в географии есть географические названия, связанные с шаром. Например, между Северным и Южными островами Новой Земли есть пролив, который соединяет Баренцево и Карское моря, который называется Маточкин Шар, или пролив между берегами острова Вайгач и материком Евразии – Югорский Шар. Мы думаем, что эти проливы названы шарами в силу того, что их размеры, форма дна напоминают шаровую поверхность.

2.12. Сфера и шар в искусстве

Математика Эшера

Кроме того, «игрой» с логикой пространства являются картины Эшера, на которых изображены различные «невозможные фигуры»; Эшер изображал их как отдельно, так и в сюжетных литографиях и гравюрах


Три сферы. 1946


Рука с отражающей сферой. 1935

Заключение

Думаю, что собранный мной материал и знания, полученные в ходе проделанной работы можно использовать на уроках геометрии, труда, в повседневной жизни, в качестве основы для элективного курса в классах физико-математического профиля, а так же на внеклассных занятиях для расширения кругозора учеников.

Литература

    Адамар Ж. Элементарная геометрия. Ч.2. М. Учпедгиз, 1958. Андреев

    Атанасян Л.С. Геометрия. Ч.2. – М: Просвещение, 1987. – 352с.

    Базылев В.Т. Геометрия. М: Просвещение, 1975.

    Базылев В.Т. Сборник задач по геометрии. М: Просвещение, 1980. -240с.

    Егоров И.П. Геометрия. – М: Просвещение, 1979. – 256с.

    Егоров И.П. Основания геометрии. – М: Просвещение, 1984. – 144с.

    Задачник «Кванта»: Математика. Часть 1. / Под ред. Н.Б. Васильева. М: 1997.

    Розенфельд Б.А. История неевклидовой геометрии. Развитие понятия о геометрическом пространстве. М. Наука., 1976. – 408с.

    Энциклопедия элементарной математики. Кн.4 – Геометрия. М., 1963.

10.Интернет-ресурсы.

Определение.

Сфера (поверхность шара ) - это совокупность всех точек в трехмерном пространстве, которые находятся на одинаковом расстоянии от одной точки, называемой центром сферы (О).

Сферу можно описать, как объёмную фигуру, которая образуется вращением окружности вокруг своего диаметра на 180° или полуокружности вокруг своего диаметра на 360°.

Определение.

Шар - это совокупность всех точек в трехмерном пространстве, расстояние от которых не превышает определенного расстояния до точки, называемой центром шара (О) (совокупность всех точек трехмерного пространства ограниченных сферой).

Шар можно описать как объёмную фигуру, которая образуется вращением круга вокруг своего диаметра на 180° или полуокружности вокруг своего диаметра на 360°.

Определение. Радиус сферы (шара) (R) - это расстояние от центра сферы (шара) O к любой точке сферы (поверхности шара).

Определение. Диаметр сферы (шара) (D) - это отрезок, соединяющий две точки сферы (поверхности шара) и проходящий через ее центр.

Формула. Объём шара :

V = 4 π R 3 = 1 π D 3
3 6

Формула. Площадь поверхности сферы через радиус или диаметр:

S = 4π R 2 = π D 2

Уравнение сферы

1. Уравнение сферы с радиусом R и центром в начале декартовой системе координат :

x 2 + y 2 + z 2 = R 2

2. Уравнение сферы с радиусом R и центром в точке с координатами (x 0 , y 0 , z 0) в декартовой системе координат :

(x - x 0) 2 + (y - y 0) 2 + (z - z 0) 2 = R 2

Определение. Диаметрально противоположными точками называются любые две точки на поверхности шара (сфере), которые соединены диаметром.

Основные свойства сферы и шара

1. Все точки сферы одинаково удалены от центра.

2. Любое сечение сферы плоскостью является окружностью.

3. Любое сечение шара плоскостью есть кругом.

4. Сфера имеет наибольший объём среди всех пространственных фигур с одинаковой площадью поверхности.

5. Через любые две диаметрально противоположные точки можно провести множество больших окружностей для сферы или кругов для шара.

6. Через любые две точки, кроме диаметрально противоположных точек, можно провести только одну большую окружность для сферы или большой круг для шара.

7. Любые два больших круга одного шара пересекаются по прямой, проходящей через центр шара, а окружности пересекаются в двух диаметрально противоположных точках.

8. Если расстояние между центрами любых двух шаров меньше суммы их радиусов и больше модуля разности их радиусов, то такие шары пересекаются , а в плоскости пересечения образуется круг.


Секущая, хорда, секущая плоскость сферы и их свойства

Определение. Секущая сферы - это прямая, которая пересекает сферу в двух точках. Точки пересечения называются точками протыкания поверхности или точками входа и выхода на поверхности.

Определение. Хорда сферы (шара) - это отрезок, соединяющий две точки сферы (поверхности шара).

Определение. Секущая плоскость - это плоскость, которая пересекает сферу.

Определение. Диаметральная плоскость - это секущая плоскость, проходящая через центр сферы или шара, сеченме образует соответственно большую окружность и большой круг . Большая окружность и большой круг имеют центр, который совпадают с центром сферы (шара).

Любая хорда, проходящая через центр сферы (шара) является диаметром.

Хорда является отрезком секущей прямой.

Расстояние d от центра сферы до секущей всегда меньше чем радиус сферы:

d < R

Расстояние m между секущей плоскостью и центром сферы всегда меньше радиуса R:

m < R

Местом сечения секущей плоскости на сфере всегда будет малая окружность , а на шаре местом сечения будет малый круг . Малая окружность и малый круг имеют свои центры, не совпадающих с центром сферы (шара). Радиус r такого круга можно найти по формуле:

r = √R 2 - m 2 ,

Где R - радиус сферы (шара), m - расстояние от центра шара до секущей плоскости.

Определение. Полусфера (полушар) - это половина сферы (шара), которая образуется при ее сечении диаметральной плоскостью.

Касательная, касательная плоскость к сфере и их свойства

Определение. Касательная к сфере - это прямая, которая касается сферы только в одной точке.

Определение. Касательная плоскость к сфере - это плоскость, которая соприкасается со сферой только в одной точке.

Касательная пряма (плоскость) всегда перпендикулярна радиусу сферы проведенному к точке соприкосновения

Расстояние от центра сферы до касательной прямой (плоскости) равно радиусу сферы.

Определение. Сегмент шара - это часть шара, которая отсекается от шара секущей плоскостью. Основой сегмента называют круг, который образовался в месте сечения. Высотой сегмента h называют длину перпендикуляра проведенного с середины основы сегмента к поверхности сегмента.

Формула. Площадь внешней поверхности сегмента сферы с высотой h через радиус сферы R:

S = 2π Rh